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SUMMARY

The bone morphogenetic protein (BMP) signaling
pathway comprises multiple ligands and receptors
that interact promiscuouslywith oneanother and typi-
cally appear in combinations. This feature is often
explained in terms of redundancy and regulatory flex-
ibility, but it has remained unclear what signal-pro-
cessing capabilities it provides. Here, we show that
theBMPpathwayprocessesmulti-ligand inputsusing
a specific repertoire of computations, including ratio-
metric sensing, balance detection, and imbalance
detection. Thesecomputationsoperateon the relative
levels of different ligands and can arise directly from
competitive receptor-ligand interactions. Further-
more, cells can select different computations to
perform on the same ligand combination through
expression of alternative sets of receptor variants.
These results provide a direct signal-processing role
for promiscuous receptor-ligand interactions and
establish operational principles for quantitatively con-
trolling cells with BMP ligands. Similar principles
couldapply tootherpromiscuoussignalingpathways.

INTRODUCTION

Many intercellular signaling pathways, such as bone morphoge-

netic protein (BMP), Wnt, Notch, and JAK-STAT, exhibit a

curious feature. Rather than using a single ligand and receptor,

these systems comprise multiple ligand and receptor variants

that interact promiscuously with one another to combinatorially

generate a large set of distinct signaling complexes. These com-

plexes activate the same intracellular targets and therefore

appear to operate redundantly. Previous work has suggested

that the use of redundant ligands and receptors offers regulatory

flexibility (Llimargas and Lawrence, 2001) or provides robust-

ness to genetic variation (Dudley and Robertson, 1997; Edson

et al., 2010). However, it is also possible that this apparent

redundancy provides specific signal-processing capabilities

(Mueller and Nickel, 2012; Murray, 2007; Schmierer and Hill,

2007; Wodarz and Nusse, 1998).

The BMP pathway is an ideal example of promiscuous recep-

tor-ligand architecture (Figure 1A). In mammalian species, it
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includes more than 20 distinct ligands, 4 type I receptors

(BMPR1A, BMPR1B, ACVR1, and ALK1), and 3 type II receptors

(BMPR2, ACVR2A, and ACVR2B). These components could

interact combinatorially to form hundreds of distinct receptor-

ligand signaling complexes, each composed of 2 type I and

2 type II receptors binding a dimeric ligand. Active signaling

complexes phosphorylate SMAD1, 5, and 8, which, together

with SMAD4, translocate to the nucleus to regulate target gene

expression (Heldin et al., 1997; Massagué, 1998).

Two features of the BMP pathway suggest the possibility

of more complex signal processing. First, in most contexts,

multiple BMP ligands and receptors appear in overlapping

spatiotemporal distributions and therefore appear to be utilized

in combinations (Danesh et al., 2009; Faber et al., 2002; Lorda-

Diez et al., 2014; Salazar et al., 2016). For example, BMP9 and

BMP10 co-regulate the formation of vasculature (Chen et al.,

2013; Ricard et al., 2012), while BMP2, BMP4, GDF5, and

GDF6 operate together in joint development (Storm and Kings-

ley, 1996). Similarly, at least 6 distinct ligands and 3 receptors

are involved in kidney development (Simic and Vukicevic,

2005). Second, individual ligands preferentially signal through

particular receptors. For example, ALK1 is preferentially acti-

vated by BMP9 and BMP10 in endothelial cells (David et al.,

2007); GDF5 signals mainly through BMPR1B and not BMPR1A

(Nishitoh et al., 1996); and BMP2/4 and BMP6/7 signal through

distinct receptors to induce mesenchymal stem cell differentia-

tion (Lavery et al., 2008).

The ability to form many competing complexes with distinct

affinity and activity preferences could, in principle, allow the sys-

tem to perform complex signal processing. However, we lack a

general quantitative framework to understand how the BMP

pathway perceives combinations of ligands, how such combina-

torial perception emerges from underlying molecular interac-

tions, andwhether and howdistinct cell types respond differently

to the same ligand combinations.

Here, combining theoretical and experimental approaches,

we show that the BMP pathway perceives ligand combinations

through a specific family of multi-dimensional response profiles.

These profiles allow the pathway to perceive relative, in addition

to absolute, levels of multiple ligands. Mathematical modeling

further reveals that these response profiles can arise from

interplay between receptor-ligand binding affinities and the

quantitative activity of each complex. The former determine

what complexes are formed, while the latter determines how

the activities of those complexes combine to establish overall
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Figure 1. Promiscuous Receptor-Ligand Interactions Can Be Analyzed in Terms of Multi-dimensional Ligand and Receptor Spaces

(A) In the BMP signaling pathway, multiple ligand variants (blue and green) interact promiscuously with multiple distinct type I (orange and yellow) and type II

(purple and pink) receptor heterodimers. Most ligands interact with multiple receptor complexes (arrows), but all active signaling complexes phosphorylate the

same second messenger, SMAD1/5/8. Phosphorylated SMAD1/5/8, in complex with SMAD4, activates endogenous targets (white) and a stably integrated

fluorescent reporter gene (yellow).

(B and C) Cellular environments and expression levels can be represented as points in multi-dimensional spaces. (B) Ligand concentration space represents the

possible local environments of cells. Only 3 ligands are plotted for simplicity, but the full space includes dimensions for each ligand species. Zoomed circles

indicate examples of two environments with distinct concentrations of ligands. (C) Receptor space represents the space of possible receptor expression profiles.

Only 3 of 7 dimensions are shown. Two example cell types with distinct receptor expression profiles are indicated (circles).

(D and E) These representations provoke the questions of howmultiple ligands combine to determine pathway activity in a given cell type (D) and how different cell

types respond to the same ligand combination (E).
pathway activity. Critically, we find that the response profiles

differ qualitatively and quantitatively depending on the expres-

sion levels of the different receptor variants. As a result,

different cell types, with distinct receptor expression profiles,

can respond to distinct features in the multidimensional space

of ligand concentrations. Together, these results establish a

general framework for analyzing the BMP signaling pathway

and reveal a more general design principle for biological

signaling systems containing promiscuous receptor-ligand

interactions.

RESULTS

Theoretical Framework
To analyze the way in which the BMP pathway uses multiple

receptor variants to integrate signals from multiple dimeric

ligand species, it is useful to consider two multi-dimensional

spaces. Cellular environments, specified by the concentrations

of each of the dimeric ligand species, can be represented as

points in a multi-dimensional ‘‘ligand space’’ (Figure 1B). Simi-

larly, individual cell types typically co-express multiple type I

and type II receptors (Cheifetz, 1999) and can therefore be

represented as points in a 7-dimensional ‘‘receptor space’’

specified by the individual expression levels of each receptor

(Figure 1C). (This space is, more precisely, the combination of

a 3-dimensional space for the type I receptors and a 4-dimen-

sional space for the type II receptors.) Not every point in ligand

or receptor space may be realized biologically, and other

secreted and intracellular factors further modulate BMP

signaling in specific contexts (Balemans and Van Hul, 2002;

Zakin and De Robertis, 2010). Nevertheless, understanding

signal processing by the BMP pathway requires determining
how multiple ligands combine, or integrate, to control the

pathway activity in a cell with a given receptor configuration

(Figure 1D) and whether distinct cells, expressing specific

combinations of receptors, can integrate the same ligands in

qualitatively different ways (Figure 1E).

BMP Ligands Exhibit Combinatorial Effects
In order to address these questions experimentally, we set out to

measure the dependence of BMP pathway activity on individual

ligands and ligand combinations. Ligand monomers form cova-

lent homodimers and heterodimers with distinct activities (Israel

et al., 1996; Neugebauer et al., 2015; Valera et al., 2010). Here,

we focused on mixtures of distinct homodimeric ligands, which

have been shown to produce non-additive responses in some

systems (Ying et al., 2000, 2001; Ying and Zhao, 2001; Açil

et al., 2014).Mixtures of heterodimeric ligands could be analyzed

similarly.

To quantitatively measure BMP pathway activity, we con-

structed a reporter cell line by stably integrating a histone 2B

(H2B)-Citrine fluorescent reporter driven by a BMP response

element (BRE) specific for SMAD1/5/8 (Korchynskyi and ten

Dijke, 2002) into the NAMRU mouse mammary gland (NMuMG)

epithelial cell line, in which the BMP pathway can be activated

without inducing differentiation (Piek et al., 1999). Reporter

expression correlated with phosphorylation of SMAD1/5/8 and

with endogenous BMP target gene expression (Figures

S1A–S1C) and exhibited a unimodal distribution for each ligand

concentration (Figure S1D). After an elevated transient response

to BMP addition, pSMAD levels reached a steady state within

90 min (Figure S1E). The steady-state behavior was also

reflected in reporter fluorescence, which accumulated at an

approximately constant rate over time for up to 48 hr (FigureS1F).
Cell 170, 1184–1196, September 7, 2017 1185
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Figure 2. The BMP Pathway Perceives Ligand Combinations

(A) NMuMG reporter cells were exposed to 136 different combinatorial pairings of 15 homodimeric BMP ligands, as indicated. Color scale indicates mean

fluorescence level at 24 hr, normalized by the uninduced population (relative activity).

(B) From the complete interaction matrix, we extracted the individual response to each ligand (top row) and compared to the response to BMP4 (bottom row) and

to mixtures of each ligand with BMP4 (middle row). By comparing each vertical triplet, we see that specific ligands combine with BMP4 in different ways, both

synergistically and antagonistically.

(C–E) Measurements of full input-output response profiles for specific ligand pairs. BMP4 and BMP9 combine to increase pathway activity in an additive fashion

(C). BMP4 and GDF5 combine in a ratiometric manner (D). BMP4 and BMP10 showed an ‘‘imbalance detection’’ response (E). For each plot in (C–E), the dashed

outline indicates a set of ligand concentrations varying from high concentration of one ligand (top left corner) to high concentration of the other ligand through

intermediate states containing both ligands (e.g., top right). In (C–E), the bottom row and left column correspond to an absence of the indicated ligand.

(F–H) The responses along the dashed contour are plotted for BMP4-BMP9 (F), BMP4-GDF5 (G), and BMP4-BMP10 (H). Each pair shows a different dependence

on ligand ratio. The logarithmic levels of each ligand are indicated schematically by the heights of the blue/green bars along the x axis. Error bars indicate SD

calculated from at least 3 experiments.

See also Figures S1 and S2 and Tables S1 and S4.
(Since the fluorescent protein is stable and the cell cycle is longer

than 24 hr in these conditions, linear accumulation indicates a

constant rate of reporter expression.) Based on these dynamics,

we selected 24 hr post induction as a time point for subsequent

analysis.

As a first step to classifying ligand integration behaviors, we

sought to identify candidate ligand pairs for subsequent

higher-resolution analysis. We performed a coarse-grained

survey of 15 commercially available homodimeric ligands

(Figure 2A). We measured reporter expression in response to

each ligand individually, at a specific base concentration

(STARMethods; Table S1); each ligand at twice its base concen-

tration (diagonal elements); and each pair of ligands at their base
1186 Cell 170, 1184–1196, September 7, 2017
concentrations (other matrix elements). To quantify pathway

activity, we normalized each measurement by basal activity

with no added ligand (bottom).

Many individual ligand pairs generated stronger or weaker

responses than expected given their individual effects (Figures

2A, S1G, and S1H). For example, BMP3 combined antagonisti-

cally with almost every other ligand. Furthermore, some individ-

ual ligands combined in qualitatively different ways with different

ligands. For example, BMP7 and BMP4 each exhibited amixture

of antagonistic and synergistic interactions with other ligands.

Overall, these results indicate that the effect of any given ligand

on pathway activity can, in general, depend in complex ways on

other ligands.



Higher-Resolution Analysis Reveals Distinct Multi-
ligand Response Profiles
To gain a clearer view of multi-ligand responses, we analyzed the

diverse ways in which BMP4, one of the best-studied BMP

ligands, combines with other ligands (Figure 2B), particularly

BMP9, GDF5, and BMP10 (Figures 2C–2E). To quantitatively

characterize these interactions in a manner independent of the

choice of base concentrations, we analyzed a 2-dimensional

matrix of logarithmically spaced ligand concentrations (Figures

2C–2E). The broad (3 orders of magnitude) concentration range

covers the full input dynamic range for each ligand pair in the

NMuMG cell line and overlaps ligand concentrations in circu-

lating blood (David et al., 2008), as well as those used to induce

BMP-dependent responses in vitro (Lavery et al., 2008; Heggebö

et al., 2014; Hatsell et al., 2015).

Each of the three ligand pairs showed qualitatively distinct

response profiles. BMP4 and BMP9 increased pathway activity

both individually and in combination, exhibiting an additive

response, with little dependence on ligand identity, as one

would expect for ligands that function redundantly (Figures 2C

and S2A). By contrast, GDF5 reduced activation by BMP4 in

a dose-dependent fashion, such that pathway output approxi-

mated the ratio of the concentrations of the two ligands (Figures

2D and S2A). Similar ratiometric responses have been observed

in other systems (Atkinson, 1968; Berg et al., 2009; Escalante-

Chong et al., 2015; Madl and Herman, 1979). Finally, and

most intriguingly, BMP4 and BMP10 were potent activators

individually, but each became inhibitory in the presence of

high concentrations of the other ligand, resulting in a weaker

response when both ligands were present (Figures 2E and

S2A). Interestingly, in this mode, each ligand can play both acti-

vating and inhibitory roles. We termed this integration mode

‘‘imbalance detection,’’ because it responds maximally to

extreme ratios (imbalances) of the two ligand concentrations.

We note that the same 2-dimensional response profiles were

observed using independently generated reporter cell lines,

indicating that they do not reflect aspects of the chromatin

configuration of a specific reporter integration site (Figure S2C).

The integration functions were also independent of the ligand

supplier (Figure S2D). Together, these results identify three

distinct ways in which the BMP pathway can integrate

ligand pairs.

Interestingly, these responses depend in distinct ways on the

ligand composition, defined as the relative concentrations of the

two ligands. To study this dependence, we plotted the response

to varying relative ligand concentrations at high total ligand con-

centration (Figures 2C–2E, dashed outline). These contours

reveal that pathway activity is independent of ligand composition

in the additive case (Figure 2F), monotonically dependent in the

ratiometric case (Figure 2G), and non-monotonically dependent

in the imbalance detection case, where pathway activity declines

near a specific intermediate ligand ratio (Figure 2H). Similar

composition dependence can be observed at lower ligand con-

centrations. The only exception is imbalance detection, which at

ligand concentrations <10 ng/mL becomes indistinguishable

from the additive response (Figure 2C). These results indicate

that the BMP pathway implements a diverse set of computations

on multi-ligand inputs in NMuMG cells and can be strongly
controlled by ligand composition, as well as absolute ligand

concentration.

Response Profiles Emerge Rapidly and Are Stable
We next asked at what level and over what timescales these

response profiles emerge. First, to access an earlier and more

direct readout of pathway activity, we measured SMAD1/5/8

phosphorylation at 20 min after stimulation with select ligand

pairs, using immunostaining (Figure 3A) and western blots (Fig-

ures S2E and S2F). Both measurements revealed qualitatively

similar response profiles as the fluorescent reporter, indicating

that computations emerge within 20 min and can be observed

at the level of SMAD phosphorylation. We note that ERK1/2, a

non-canonical output (Nohe et al., 2004), did not respond to

BMP stimulation in this cell context (Figure S2G).

Next, to better understand the dynamics of the BMP response,

we used time-lapse imaging to track reporter expression over

time in response to BMP4 and/or BMP10 (Figures 3B and

S3A). The imbalance detection response could be identified by

6 hr and persisted for more than 96 hr. However, the relative level

of activation caused by the combination of BMP4 and BMP10,

compared to the individual ligands, remained constant (Fig-

ure S3B), indicating that the imbalance detection response

profile is stable over extended periods.

Feedback Loops and Pathway Modulators
We next asked whether known feedback loops in the BMP

pathway were necessary for the observed computations. The

negative pathway regulator SMAD6 is a downstream target of

BMP (Figure S1B) (Li et al., 2003; Afrakhte et al., 1998). How-

ever, knockdown of SMAD6 did not qualitatively change the

shape of the response profiles (Figures S3C–S3E). Another

reported feedback involves upregulation of BMPR2 in response

to BMP9 stimulation (Long et al., 2015). Addition of 400 ng/ml

BMP9 generated a 2-fold increase in BMPR2 expression (Fig-

ure S3F). However, even this relatively modest effect appeared

only at �12 hr, consistent with the timescales of transcriptional

regulation and too late to explain the appearance of the compu-

tations at earlier time points. These results suggest that

these feedback loops are not required for the computations

observed here, although feedbacks may play other roles in

enhancing the amplitude or dynamics of the pathway over

longer timescales.

The BMP pathway utilizes many secreted and surface-bound

modulators to shape the spatial distribution of available ligands.

To test whether these factors play a role in ligand integration, we

first determined which ones were expressed in the NMuMG cell

line (Table S2). Individually depleting each of these factors using

siRNAs (Figure 3C) did not affect the type of response profile

generated by BMP4 in combination with BMP9, BMP10, or

GDF5 (Figures 3D–3G). In addition, BMPs could interact more

generally with heparan sulfate proteoglycans (HSPGs). Enzymat-

ically perturbing HSPGs with heparinase or inhibiting their

biosynthesis with NaClO3 showed minimal effects on the

response of the pathway to BMP combinations (Figures

S3G–S3J). Together, these results suggest that while these

modulators play key roles in other aspects of BMP signaling,

they are not required for the observed multi-ligand
Cell 170, 1184–1196, September 7, 2017 1187
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Figure 3. Combinatorial Ligand Response

Profiles Emerge Rapidly, Persist for Long

Periods, and Do Not Require Co-factors

(A) Phospho-SMAD immunostaining reveals

responses to BMP4-BMP9, BMP4-GDF5, and

BMP4-BMP10 ligand combinations 20 min after

ligand addition. Colors indicate pSMAD levels

relative to unactivated cells.

(B) The dynamical response to mixtures of BMP4

and BMP10 is plotted over 70 hr after addition of

the ligands. Data are normalized at each timepoint

to the response of cells treated with BMP4 only.

(C) Expressed BMP modifiers, identified in RNA

sequencing (Table S2), were depleted from

NMuMG using siRNA. The relative expression

levels of Fst, Rgmb, and Twsg1 were measured

using qPCR in cells transfected with the corre-

sponding siRNA (blue) normalized to their levels in

cells transfected with a random siRNA (gray).

(D–G) After depletion by random siRNA (D), Fst

siRNA (E), Rgmb siRNA (F), or Twsg1 siRNA (G),

cells were treated with varying levels of BMP4

and the indicated ligand to assess their potential

effect on combinatorial ligand response profiles.

In (C)–(G), error bars indicate SD calculated from

three independent experiments. See also Figures

S2 and S3 and Tables S2–S4.
computations. These results are, however, consistent with com-

putations emerging directly from receptor-ligand interactions.

A Minimal Model of Promiscuous Receptor-Ligand
Interactions
To understand how receptor-ligand interactions could generate

the observed complex ligand integration modes, we constructed

a simplified mathematical model that incorporates two key

features of the BMP pathway: the bipartite structure of active
1188 Cell 170, 1184–1196, September 7, 2017
BMP receptor complexes (i.e., the

requirement for both type I and type II

receptors) and promiscuous, competi-

tive receptor-ligand interactions (Figures

4A and 4B) (Heinecke et al., 2009; Mas-

sagué, 1998; Mueller and Nickel, 2012;

Nickel et al., 2009; Vilar et al., 2006).

The model considers a set of ligands,

denoted Lj, and two types of receptors,

denoted Ai and Bk , analogous to the

BMP type I and type II receptor subunits,

respectively. Each ligand can bind with

affinity KD
ij to an A-type receptor to form

a dimeric complex, Dij, which in turn

can bind a B-type receptor with affinity

KT
ijk to form an active trimeric complex,

Tijk . Because the affinity parameters can

differ for each ligand-receptor combina-

tion, this model allows both receptor

preferences as well as promiscuous

interactions. Each trimeric complex

phosphorylates SMAD proteins at a
distinct rate, or activity, denoted εijk , to produce an overall output

signal S at the steady state. The model considers the experi-

mental regime of large extracellular volume, but similar conclu-

sions occur at finite volume (STAR Methods). Here, we focus

on the minimal case of 2 ligands, 2 A-type receptors, and 2

B-type receptors, whose behavior can be specified by 16 inde-

pendent biochemical parameters and 4 receptor expression

levels and which is sufficient to explain the present experimental

observations.
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Figure 4. Mathematical Modeling Shows that Combinatorial Receptor-Ligand Interactions Generate a Specific Repertoire of Computational

Functions

(A) Schematic representation of ligands (top row), type A receptors (second row), type B receptors (third row), intermediate complexes (fourth row), and signaling

complexes (fifth row), as described in the text. Only a subset of possible complexes is shown for simplicity. Colored lines highlight interactions involved in the

formation of a single signaling complex, with corresponding parameters indicated.

(B) Reactions (left), corresponding steady-state equations (right), and the equation for the total response (bottom) for the model.

(C) With 2 ligands and 2 variants of each receptor type, the model produces a variety of different signal-processing behaviors. Each point represents the behavior

of one randomly chosen parameter set. The x axis represents the type and strength of interference between the ligands, from antagonism (negative values) to

synergy (positive values). The y axis represents the relative strength of the two ligands individually, as defined in Figure S4B and STARMethods. Most parameter

sets generate computations that fall within a triangular region, while some show more extreme phenotypes. The four archetypal computations, shown in (D)–(G),

are indicated by colored dots.

(D–G) The four archetypal computations (additive, [D]; ratiometric, [E]; imbalance, [F]; and balance, [G]) are shown (top) together with corresponding profiles

showing pathway activity as a function of ligand ratio, as in Figures 2F–2H (bottom). Colors indicate normalized response strength.

See also Figures S4 and S5.
This simplifiedmodel omits several known features of the BMP

pathway, such as variations in the sequence of binding reactions

(Gilboa et al., 2000; Rosenzweig et al., 1995; Ventura et al.,

1995), the hexameric nature of actual signaling complexes,

and the roles of other BMP regulatory factors. These features

likely play important biological roles (e.g., controlling the ampli-

tude and spatiotemporal dynamics of signaling) that should be

considered in models of specific biological processes. However,

incorporation of these additional features in the model does not

change the types of input-output computations examined here

(STAR Methods).
Archetypal Functions Define the Range of Response
Profiles
To explore the range of integration modes produced by the

model, we computed the input-output behavior of the system

for 100,000 random parameter sets (Figure S4A). The model

produced a repertoire of computational response profiles, which

included additive, ratiometric, and imbalance detection. Tomore

quantitatively characterize this repertoire, we defined two fea-

tures that together capture key aspects of the shape of the

response profiles (Figures S4B–S4D). First, we defined the rela-

tive ligand strength (RLS) to quantify the asymmetry in pathway
Cell 170, 1184–1196, September 7, 2017 1189



activity generated by the ligands individually. The RLS is defined

as the ratio of pathway activity produced by the weaker ligand to

that produced by the stronger ligand. Second, we defined the

ligand interference coefficient (LIC) to quantify the degree to

which the two ligands positively or negatively synergize (STAR

Methods). The LIC is defined by the deviation of pathway activity

in mixed ligand environments beyond the range of the responses

in single ligand environments.

When plotted in this two-parameter phenotypic space, the

simulated systems occupied a continuous region that loosely

conformed to an inverted triangle (Figures 4C and S4E). Two

vertices of the triangle strikingly resembled the ratiometric and

imbalance detection functions observed experimentally (cf. Fig-

ures 2C–2E and Figures 4D–4F). The third vertex, occurring for

ligandswith aRLSof 1 and apositive LIC, represented a newpre-

dicted behavior, which we termed ‘‘balance detection,’’ because

it shows a maximal response when both ligands are present at a

specific ratio. All other functions, including the additive interac-

tion at RLS = 1, LIC = 0 (Figure 4C, top middle), interpolated

between these three archetypal functions (Figure S4E) (Hart

et al., 2015; Tendler et al., 2015). The archetypal functions identi-

fied here differ from standard Boolean logic, since they depend

asymptotically on ligand ratios, rather than absolute concentra-

tions (STAR Methods). These conclusions remain qualitatively

similar if one considers a finite extracellular volume (STAR

Methods; Figures S5A and S5B). This analysis provides an intui-

tive way to understand the distribution of response profiles.

To better characterize the distribution of response profiles, we

quantified the percentage of occurrences of each response type

in regions around each of the archetypal responses (Figures S5C

and S5D). All archetypal behaviors occurred, regardless of

whether parameters were chosen from a full range of values or

restricted to a biologically relevant range (STARMethods). How-

ever, parameters in the biological range showed enrichment for

the additive, balance detection, and imbalance detection

response profiles (Figure S5E). We further note that natural

biological parameters could have been selected by evolution

for functionality, including the ability to generate balance or

imbalance detection. Together, these results show that this min-

imal model can generate the full range of observed response

profiles for biologically reasonable parameter values.

Complex Response Profiles Emerge from the Interplay
of Receptor-Ligand Affinities and Activities
We next asked how the archetypal ligand integration modes

arise within the model. To do so, we analyzed the corresponding

parameter regimes in more detail (Figure S6). As expected, addi-

tive responses occur when the two ligands are approximately

equivalent, forming signaling complexes with similar phosphory-

lation activities (εi1k � εi2k ; Figures 5A and S6A). By contrast,

ratiometric behaviors occur when signaling complexes contain-

ing one ligand have higher activities than those containing the

other ðεi1k � εi2kÞ, such that a weaker ligand competitively

inhibits activation by the other, stronger ligand (Figures 5B and

S6B). Imbalance detection occurs when each receptor preferen-

tially binds to a distinct ligand with which it forms a less active

signaling complex (Figures 5C and S6C). When only one type

of ligand is present, it can bind both receptors, forming signaling
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complexes with both higher and lower activity. When both

ligands are present, the affinity preferences cause ligands and

receptors to self-sort and predominantly form less active

signaling complexes, reducing total pathway activity (Figure 5E).

Finally, balance detection occurs through a similar mechanism,

except that the relative affinities are reversed, favoring formation

of more active signaling complexes when both ligands are pre-

sent (Figures 5D and S6D).

A critical feature of the model is that the overall activity of the

pathway depends not only on how much of each ligand is com-

plexed with receptors but also on how that ligand is distributed

across the range of distinct possible receptor complexes. In the

model, simply changing the activities of the complexes can result

in completely different response profiles (Figures S4F and S4G).

As a result, addition of a second ligand can change not only the

amount of the first ligand that is bound to receptors but also,

more importantly, the distribution of that ligand across different

potential signaling complexes with distinct activities. This could

explain how two ligands can exhibit similar receptor preferences

but still combine in qualitatively different ways with a third ligand.

Taken together, these results indicate that promiscuous

receptor-ligand binding interactions are sufficient to produce a

diverse repertoire of specific multi-ligand response profiles,

including those observed experimentally. They reveal how the

full functional repertoire can be understood as interpolating

among three archetypal functions (ratiometric, imbalance detec-

tion, and the predicted balance detection function). Finally, they

show how these functions arise through specific relations

between the affinity parameters that control what receptor com-

plexes will form and the activity parameters that control how the

resulting signaling complexes contribute to the cellular

response. Thus, as suggested experimentally, the full spectrum

of observed computations requires only the ability of receptors

and ligands to compete to form a variety of distinct signaling

complexes, and differences in the relative activities of those

complexes. Despite its simplicity, this system allows for remark-

able computational diversity.

Receptor Expression Reprograms Ligand Response
Profiles
Within an organism, different cell types generally express recep-

tors at different levels. Changes in receptor expression could in

principle alter BMP responses in similar, or different, ways

compared to changes in ligand concentrations. To gain insight

into the possible role of receptor expression in pathway compu-

tations, we varied receptor expression levels in the model while

holding the biochemical parameter values (KD
ij , K

T
ijk , εijk ) fixed. We

repeated this analysis for different biochemical parameter sets.

In these simulations, some biochemical parameter sets pro-

ducedonly a limited rangeof ligand integrationmodes (Figure 6A,

left), while others were more versatile, capable of generating a

diverse range of computations as receptor expression levels

were varied (Figure 6A, right). The existence of such versatile

parameter sets in the model suggests the hypothesis that

different cell types, by expressing different receptor profiles,

might compute different responses to the same ligands.

If the BMP pathway exhibits and utilizes such versatility, cell

lines with different receptor expression profiles could show
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ijk , respectively. Lower arrow thicknesses indicate the phosphorylation rate of each signaling complex εijk .

(A) When two ligands are equivalent (similar arrow thicknesses), they combine additively.

(B) When different ligands generate different levels of activity in complex with the same receptors (thin versus thick bottom arrows), the less active ligand (blue)

competitively inhibits the more active ligand (green), leading to ratiometric behavior.

(C and D) Imbalance and balance detection regimes occur when affinity and activity parameters enable ligands to preferentially form less active (C) or more active

(D) complexes, respectively.

(E) For example, in the parameter regime corresponding to the imbalance detection, cells exposed only to a single ligand species (i.e., only blue or green ligands)

produce a mixture of strong and weakly active complexes (left, right), but cells exposed to mixtures of the two ligands predominantly form weakly active

complexes (middle), leading to the imbalance detection behavior.

See also Figure S6.
distinct response profiles for the same ligands. To test this

hypothesis, we compared the response of NMuMG cells to

E14 mouse embryonic stem (ES) cells, which express less

BMPR2 and ACVR1 andmore ACVR2B (Figure 6B). As a control,

we also analyzed NIH 3T3 fibroblasts, which had similar receptor

expression to NMuMG cells (Figure 6B). The ES cells indeed

exhibited different response profiles than NMuMG for the same

ligands (Figures 6C–6E and S7A). Most strikingly, BMP4 and

BMP9 integrated in an additive fashion in NMuMG and NIH

3T3 but showed the balance detection archetype in ES cells (Fig-

ure 6C). Other ligand pairs were also integrated similarly in NIH
3T3 and NMuMG but differently in ES cells (Figures 6D and

6E). Together, these results show that cell lines differ qualitatively

in their ligand integration modes and in a manner that correlates

with their receptor expression profiles, as predicted by the

model. Furthermore, these results also validate the model

prediction of balance detection (Figure 4G).

Reprogramming Response Profiles by Direct
Manipulation of Receptor Expression Levels
Finally, to test whether changes in receptor expression are suffi-

cient to reprogram computations, we directly perturbed receptor
Cell 170, 1184–1196, September 7, 2017 1191
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Figure 6. Receptor Expression Controls Computations

(A) Comparison of two simulated biochemical parameter sets (see Table S5 and STARMethods for parameter values). For each set, multiple receptor expression

profiles are plotted (individual dots). Dot color indicates the most similar archetype (cf. Figure 4C). For one parameter set (non-versatile, left), receptor expression

only weakly affected computation. For the other parameter set (versatile, right), variation in receptor expression generates the full range of possible computations.

(B) BMP receptor expression profiles for three cell lines. Bars indicate expression levels of each receptor (fragments per kilobase of transcript per million mapped

reads [FPKM]). Error bars represent SD of three independent biological replicates.

(C–E) Computation correlates with receptor expression pattern for three ligand pairs: BMP4-BMP9 (C), BMP4-GDF5 (D), and BMP4-BMP10 (E). Each column

shows the response to the indicated pair of ligands for each cell line. Note the qualitative change in function between mouse embryonic stem cells (mESCs;

bottom) and the other cell lines. Line colors refer to the closest archetype (cf. Figure 4C).

(F–H) Perturbing receptor expression level reprograms computations in NMuMG cells for the three ligand pairs: BMP4-BMP9 (F), BMP4-GDF5 (G), and BMP4-

BMP10 (H). Wild-type cells (black points) were compared to cells with perturbed receptor expression (white points). Specific receptor perturbations are indicated

next to each line, with up and down arrows indicating overexpression and siRNA, respectively.

In (C)–(H), error bars indicate SD of at least 3 replicates.

See also Figure S7 and Tables S3–S5.
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Ligand combinations represent inputs to the pathway, which processes them

through receptor-ligand interactions to control the expression level of down-

stream target genes. In this scheme, a given receptor configuration can

perform different computations on different ligand combinations (e.g., additive

and imbalance, top), whereas cells expressing different receptor profiles can

perform distinct computations on the same combination of ligands (e.g., ra-

tiometric and additive, bottom).
expression in NMuMG cells. Depletion of the most highly

expressed type II receptor in this cell type, BMPR2, with small

interfering RNA (siRNA) changed the BMP4-BMP9 response

from additive to ratiometric (Figures 6F and S7C). This indicates

that BMP4 activates the pathway predominantly through

BMPR2. By contrast, BMP9 can activate through other type II

receptors, but BMP4 can effectively inhibit such BMPR2-inde-

pendent BMP9 signaling.

As a second example, ectopically expressed BMPR1B, which

is known to mediate GDF5 signaling (Nishitoh et al., 1996),

enabled GDF5 to activate, rather than inhibit, the pathway, and

thereby reprogrammed the ratiometric BMP4-GDF5 interaction

to an additive one (Figures 6G and S7C). Furthermore,

combining ectopic BMPR1B to enable GDF5 signaling with

depletion of BMPR2 to reduce BMP4-dependent signaling

inverted the ratiometric response (Figures 6G and S7C).

Third, we askedwhether we could reprogram imbalance detec-

tion between BMP4 and BMP10 (Figure 2E). In the model, imbal-

ance detection results from ligand competition for receptors. To

alleviate this competition, we ectopically expressed the ALK1

receptor, which is known to mediate BMP9 and BMP10 signaling

(Davidetal., 2007).Thisperturbation indeed removedcompetition,

generating the predicted additive response (Figures 6H and S7C).

Taken together, these results show that receptor expression

levels directly control computations and demonstrate that this

effect enables rational manipulation of ligand integration modes

using insights from the model (Figure S7B).
DISCUSSION

Our results show that promiscuous BMP receptor-ligand inter-

actions enable cells to perceive information encoded in combi-

nations of ligands (Figure 7). They do so through a specific set

of computations over the multi-dimensional space of ligand

concentrations, with the computations performed on a given

set of ligands depending on the repertoire of receptors

the cell expresses. These computations interpolate between

archetypes loosely analogous to addition (additive, Figure 4D),

subtraction (imbalance detection, Figure 4F), multiplication (bal-

ance detection, Figure 4G), and division (ratiometric, Figure 4E).

This indicates that cells do not, in general, perceive ligand

abundance but rather perceive specific functions of ligand

combinations.

This system provides several key capabilities for cells. First, it

is sensitive to both absolute concentrations of individual ligands

and their relative concentrations. Encoding signals in relative

ligand concentrations can increase robustness to variations in

ligand accessibility, cell surface area, and other properties that

affect all ligands in a correlated way. Second, computation is

integrated with sensing. The system performs computations on

ligand concentrations directly through competitive binding inter-

actions, at steady state, without requiring regulatory cascades or

transcriptional feedback loops. The observed computations

arise because affinities among components need not correlate

with the activities of the resulting signaling complexes. This

allows ligands to compete for receptors to form a variety of

distinct signaling complexes with distinct efficiencies. Third,

and most intriguingly, this system possesses computational

plasticity. By controlling the abundance of different receptor

variants, a cell can control which computations it performs,

and thus what features of the ligand environment it responds

to. These capabilities could enable non-intuitive operative

modes. For example, the use of ligand combinations may offer

the ability to selectively activate a given cell type, since different

cell types may respond to specific ligand combinations. Tempo-

ral changes in the concentration of a single ligand could elicit

different, or opposite, changes in signal perception in distinct

cell types.

These results should improve our ability to understand and

manipulate natural BMP-dependent processes. For example,

efficient primordial germ cell differentiation was shown to

require a combination of both BMP4 and BMP8B homodimers,

provoking the question of whether these ligands are integrated

through balance detection (Ying et al., 2001). Conversely,

BMP2 and BMP7 show opposing effects on ureter branching

in developing kidneys (Piscione et al., 1997), suggesting they

may operate in a ratiometric mode, and similar interactions

were recently reported for BMP2 and GDF5 in multiple con-

texts (Klammert et al., 2015; Liu et al., 2016). The framework

described here can be used to analyze these and other specific

biological processes that utilize multiple BMPs (Açil et al.,

2014; Bandyopadhyay et al., 2006; Chen et al., 2013). In the

context of disease, many therapeutic strategies have focused

on using a single ligand to treat conditions such as bone

injuries and abnormalities, arthritis, diabetes, vascular condi-

tions, obesity, and cancer (Kim and Choe, 2011; Wang et al.,
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2003). Similarly, directed differentiation approaches in regener-

ative medicine often rely on a single BMP ligand. However,

ligand combinations may provide more potent, and specific,

control in these contexts.

Further work on higher dimensional combinations of ligands,

as well as investigation of the effects of diffusible inhibitors such

as Noggin and Chordin, will help to provide an understanding of

systems like kidney development that depend on many different

ligands, receptors, and modulators expressed in spatially and

temporally overlapping patterns (Simic and Vukicevic, 2005).

Similarly, quantitative analysis of receptor expression states

will help elucidate the specific combination of ligands that

each cell type senses. Experimental measurements of the

effective parameter values for each specific molecular compo-

nent in the BMP pathway could enable a more direct, quantita-

tive, and predictive modeling framework. At a finer level, within

a single cell type or state, fluctuations, or ‘‘noise,’’ in receptor

expression could affect how cells perceive ligand combinations.

However, within the model, typical levels of receptor expression

noise show only mild effects (Figures S7D–S7H; STAR

Methods).

Finally, further analysis could reveal additional computations

beyond those described above. Extending the model to include

the TGF-b ligands could be used to understand newly discov-

ered ligand-level competition between the two branches of this

signaling pathway (Hatsell et al., 2015; Lowery et al., 2015; Olsen

et al., 2015) and incorporate them into a single framework.

More generally, Wnt, FGF, JAK-STAT, Eph-Ephrin, and other

signaling pathways also exhibit promiscuous interactions

between multiple ligand, receptor, and co-receptor variants

and may function according to similar principles (Jørgensen

et al., 2009; Murray, 2007; Wodarz and Nusse, 1998). Future

elucidation of the principles of programmable computation

through promiscuous receptor-ligand interactions could be

used to engineer precise multicellular behaviors for synthetic

biology and tissue engineering applications.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti phospho-SMAD1/5/8 Cell Signaling Technology Cat#13820; RRID: AB_2493181

Rabbit monoclonal anti phospho-p44/42 MAPK Cell Signaling Technology Cat#4370; RRID: AB_2315112

Rabbit monoclonal anti SMAD1 Cell Signaling Technology Cat#6944; RRID: AB_10858882

Rabbit polyclonal anti BMPR2 Cell Signaling Technology Cat#6979; RRID: AB_10889249

Rabbit monoclonal anti GAPDH Cell Signaling Technology Cat#2118; RRID: AB_561053

Goat anti-rabbit IgG Cell Signaling Technology Cat#7074; RRID: AB_2099233

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Recombinant BMP proteins (see Table S1) R&D Systems See Table S1

Recombinant Murine BMP-4 Peprotech Cat#315-27

Recombinant Human BMP-10 Peprotech Cat#120-40

Recombinant Murine GDF-5 Peprotech Cat#315-24

Fetal Bovine Serum ThermoFisher Cat#10439024

Fetal Bovine Serum Clontech Cat#631106

Cosmic Calf Serum Hyclone Cat#SH30087.03

Leukemia Inhibiting Factor ThermoFisher Cat#ESG1107

Heparinase I/III Sigma Cat#H3917

Sodium Chlorate Sigma Cat#S3171

20X LumiGLO Reagent and 20X Peroxide Cell Signaling Technology Cat#7003

Halt protease inhibitor ThermoFisher Cat#87785

RNAiMAX ThermoFisher Cat#13778075

Lipofectamine LTX ThermoFisher Cat#15338100

Fugene HD Promega Cat#E2311

Critical Commercial Assays

RNAeasy mini kit QIAGEN Cat#74104

iScript cDNA synthesis kit BioRad Cat#1708890

IQ SYBR Green Supermix BioRad Cat#1708882

SsoAdvanced Universal probes Supermix BioRad Cat#1725281

NEBNext Ultra RNA-seq kit NEB Cat#E7530

Deposited Data

RNAseq data This paper GEO: GSE98674

Experimental Models: Cell Lines

NMuMG ATCC CRL-1636

NIH 3T3 ATCC CRL-1658

E14 mouse ES cells (E14Tg2a.4) Laboratory of Bill

Skarnes and Peri Tate

N/A

NMuMG Sensor line This paper N/A

NIH 3T3 Sensor line This paper N/A

mESC Sensor line This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Oligonucleotides

siRNA targeting BMP receptors (see Table S3) This paper See Table S3

siRNA targeting BMP modulators (see Table S3) This paper See Table S3

qPCR primers and probes (see Table S4) This paper N/A

qPCR primers (see Table S4) This paper N/A

Recombinant DNA

pcDNA5 BRE mCMV Citrine HygroR This paper N/A

Pb510b Bmpr1a T2A mTurquoise NeoR This paper N/A

Pb510b Bmpr1b T2A mTurquoise NeoR This paper N/A

Pb510b Bmpr2 T2A mTurquoise NeoR This paper N/A

Pb510b Acvr1 T2A mTurquoise NeoR This paper N/A

Pb510b Acvr2a T2A mTurquoise NeoR This paper N/A

Pb510b Acvr2b T2A mTurquoise NeoR This paper N/A

Pb510b Alk1 T2A mTurquoise NeoR This paper N/A

Software and Algorithms

MATLAB MathWorks N/A

MATLAB based flow cytometry analysis software This paper N/A

MATLAB code for simulating ligand-receptor

interactions

This paper N/A

Galaxy (RNAseq analysis) Afgan et al., 2016 https://usegalaxy.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact,Michael B.

Elowitz (melowitz@caltech.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tissue culture and cell lines
NMuMG (NAMRUMouseMammary Gland cells, female) and NIH 3T3 (mouse fibroblast, male) cells were acquired from ATCC (CRL-

1636 and CRL-1658, respectively). E14 cells (mouse embryonic stem cells, E14Tg2a.4, male) were obtained from Bill Skarnes and

Peri Tate. All cells were cultured in a humidity controlled chamber at 37�C with 5% CO2. NMuMG cells were cultured in DMEM

supplemented with 10% FBS (Clonetech #631367), 1mM sodium pyruvate, 1unit/ml penicillin, 1mg/ml streptomycin, 2mM L-gluta-

mine and 1X MEM non-essential amino acids. NIH 3T3 cells were cultured in DMEM supplemented with 10% CCS (Hyclone

#SH30087), 1mM sodium pyruvate, 1unit/ml penicillin, 1mg/ml streptomycin and 2mM L-glutamine. ES cells were plated on tissue

culture plates pre-coated with 0.1% gelatin and cultured in standard pluripotency-maintaining conditions (Smith, 2001)

using DMEM supplemented with 15% FBS (ES qualified, GIBCO #16141), 1mM sodium pyruvate, 1unit/ml penicillin, 1mg/ml strep-

tomycin, 2mM L-glutamine, 1X MEM non-essential amino acids, 55mM b-mercaptoethanol, and 1000Units/ml leukemia inhibitory

factor (LIF).

Sensor cell lines construction
Construction of the reporter cell lines was carried out via random integration of a plasmid harboring the BMP response element (BRE)

(Korchynskyi and ten Dijke, 2002) in the enhancer region of aminimal CMV driving the expression of an H2B-Citrine protein fusion. ES

cells were transfected using the FugeneHD reagent. NMuMG and 3T3 cells were transfected using Lipofectamine LTX. After trans-

fection, cells were selected with 100mg/ml hygromycin. All experiments were performed with clonal populations, generated via

colony picking (ES) or limiting dilutions (NMuMG, NIH 3T3). To ensure results were not dependent on the specific reporter integration

site, an independent BRE-reporter cell line was generated using PiggyBac integration (SBI) (Figure S2C).
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METHOD DETAILS

BMP response and flow cytometry
Sensor cell lines were plated at 40%confluency in 96 well plates and cultured under standard conditions (above) for 12 hr. Media was

then replaced and ligand(s) were added at specified concentrations. 24 hr after ligand addition, cells were prepared for flow cytom-

etry in the following way: Cells were washed with PBS and lifted from the plate using either 0.05 mL Accutase (ES cells) or trypsin

(NMuMG and 3T3 cells) for 5 min at 37�C. Protease activity was quenched by re-suspending the cells in HBSS with 2.5mg/ml Bovine

Serum Albumin (BSA). Cells were then filtered with a 40mm mesh and analyzed by flow cytometry (MACSQuant VYB, Miltenyi). All

recombinant BMP ligands were acquired from R&D Systems (Table S1), with the exception of Figure S2D where BMP4, BMP10

and GDF5 were acquired from Peprotech.

Ligand integration survey
In order to identify non-additive ligand integrationmodes, cells were exposed to amatrix of ligands at predetermined concentrations.

We selected concentrations that were sufficient to induce responses in cells already known to respond to those ligands, but not so

high as to induce potential non-specific responses. For this reason, we based ligand concentrations on supplier data, and selected a

concentration at the high end of the input dynamic range for a cell based system susceptible to each ligand (see Table S1). All BMP

ligands used in the survey were acquired from R&D Systems (see Table S1 for more information).

SDS-PAGE and immunoblotting
Phospho-SMAD1/5/8

For assessment of phospho-SMAD1/5/8, cells were plated at 40%confluency under standard conditions in 24 well plates. To reduce

phospho-SMAD1/5/8 background activity, cells were transferred to reduced serummedia containing 1.0% FBS for 12 hr. This media

was then exchanged for DMEM and cells were incubated at 37�C for another 6 hr. DMEMwas then replaced and ligands were added

in DMEM at the specified concentrations and incubated at 37�C for 20 min. Cells were then treated with 50ml lysis buffer (Cell

Signaling 9803) with the following additions: 0.1M DTT, 50mM NaF, 1mM PMSF and additional protease inhibitors (Thermo

87785). Samples were immediately stored at �80�C until processed for SDS-PAGE. SDS-PAGE was conducted using NuPAGE

Bis-Tris Mini Gels 4%–12% (Thermo). Approximately 10-20mg of total protein, denatured by heat, was loaded per well. Samples

were run at 50mA for approximately 60 min. Protein was transferred from gels to nitrocellulose using the iBlot apparatus and iBlot

reagents (Thermo) applying program 2 for 8 min. Membranes were trimmed and blocked with 5% milk in Tris buffered saline with

0.1% Tween 20 (TBST) for at least 60 min at room temperature. Blocking buffer was removed and membranes were briefly washed

with TBST. Antibodies against phospho-SMAD1/5/8 (13820 Cell Signaling), phospho-p44/42 MAPK (4370 Cell Signaling), SMAD1

(6944 Cell Signaling), GAPDH (2118 Cell Signaling) were than applied at a dilution of 1:1000, 1:2000 for GAPDH, in 1.0% BSA

TBST and incubated at 4�C for 12 to 16 hr. After incubation with primary antibody, immunoblots were washed with TBST three times

for 5min at room temperature and a secondary antibody conjugatedwith horseradish peroxidase (7074Cell Signaling) was applied to

the blots at 1:1000 in 1.0%BSA TBST for 60min at room temperature. After incubation with the secondary antibody, the immunoblots

were washed with TBST three times for 5 min and developed using a luminol based substrate (7003 Cell Signaling). The immunoblots

were imaged using a BioRad ChemiDocMP imaging system using exposure times that produced signal below saturation. Densitom-

etry was performed using ImageJ (https://imagej.nih.gov).

BMPR2

For assessment of BMPR2 protein expression after addition of select BMP ligands, cells were plated at 40% confluency under

standard conditions in 24 well plates. Media was replaced, with addition of BMP9 (400ng/ml), and cells were then incubated at

37�C for the specified times. Cells were then treated with 50ml lysis buffer (see above). Samples were immediately stored

at �80�C until processed for SDS-PAGE. After electrophoresis, gels were incubated with 20% ethanol in TBS for 5 min. Transfer

of protein to nitrocellulose was performed with the iBlot apparatus using program 3 for 8 min. Antibodies against BMPR2 (6979

Cell Signaling) and GAPDH (2118 Cell Signaling) were then applied at 1:1000 and 1:2000, respectively, in 1.0% BSA TBST and incu-

bated at 4�C for 12 to 16 hr. Immunoblots were processed, developed, and analyzed as described above.

BMP response with heparinase I/III
Cells were plated at 40% confluency in 96 well plates and cultured under standard conditions for 12 hr. Media was exchanged with

media containing 2 units of Heparinase I/III (H3917 SIGMA) and cells were incubated at 37�C for 3 hr. Media was then replaced with

media containing ligands at the specified concentrations. The cells were then incubated with ligands at 37�C for 20 min. After incu-

bation for 20 min the cells were processed for phospho-SMAD1/5/8 staining and flow cytometry as described above.

BMP response with NaClO3

Sensor cells were plated at 40% confluency under standard conditions including 20 mMNaClO3 (Sigma) and passaged 36 hr later at

40% confluency in 96 well plates under the same conditions and cultured for another 12 hr. Media was then replaced and ligands

were added at the specified concentrations. The cells were then incubated with ligands at 37�C for 24 hr and were processed for

flow cytometry as previously described.
Cell 170, 1184–1196.e1–e13, September 7, 2017 e3
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Receptor overexpression
Overexpression plasmids were constructed for each of the BMP receptors (BMPR1A, BMPR1B, BMPR2, ACVR1, ACVR2A, ACVR2B

and ALK1) using the Gibson cloning method (Gibson et al., 2009). Bmpr1b and Alk1 cDNA was purchased from Dharmacon

(MMM1013-202858407 andMMM1013-202763719). All other receptor cDNAs were generated by RT-PCR from total RNA extracted

from NMuMG cells. The receptor cDNA was concatenated with mTurquoise with an intervening T2A cleavage site (Szymczak and

Vignali, 2005), and was expressed under the control of a constitutive PGK promoter integrated in the Pb510b plasmid backbone

to enable PiggyBac integration (Ding et al., 2005; Wu et al., 2006). Stable integrations were then generated using the PiggyBac

method. Cells were co-transfected with these overexpression plasmids and PB200A to express transposase, and selected with

Geneticin. Experiments were performed with polyclonal populations resulting from PiggyBac integrations.

siRNA induced knock-down
Cells were plated at 40% confluency with 30mM total siRNA (ThermoFisher silencer select #4390771) and 3ml RNAiMAX (Life tech-

nologies). For every gene, a pool of two distinct siRNAs was used, listed in Table S3. Cells were passaged after 24 hr and were used

for the relevant experiments.

Quantitative PCR
Total RNA was harvested from cell lysate using the RNeasy mini kit (QIAGEN) and cDNA was generated from 1mg of RNA using the

iScript cDNA synthesis kit (BioRad) following the manufacturer’s instructions. Primers and probes for specific genes (Table S4) were

purchased from IDT. Reactions were performed using 1:40 dilution of the cDNA synthesis product with either IQ SYBR Green Super-

mix or SsoAdvanced Universal probes Supermix (BioRad). Cycling was carried out on a BioRad CFX96 thermocycler using an initial

denaturing incubation of 95� for 3min followed by 39 cycles of (95�C for 15 s, followed by 60�C for 30 s). Each condition was assessed

with two biological repeats and each reaction was run at least in triplicate.

Antibody detection for phospho-SMAD1/5/8
Cells exposed to specified concentrations of BMP4 for 24 hr were harvested from single wells of a 24 well plate using either 0.05mL

Accutase (ES cells) or trypsin (NMuMG and 3T3 cells). Protease activity was quenched by re-suspending the cells in 0.45mL HBSS

with 1.0% Bovine Serum Albumin (BSA). The cells were then pelleted, washed with 0.5mL PBS, and fixed by re-suspension in 0.5mL

of 4.0% formaldehyde for 5 min at room temperature. Following fixation, the cells were washed in 0.5mL PBS and re-suspended in

0.5mL PBS with 1.0% Triton X-100 for permeabilization. The cells were then washed with 0.5mL PBS and re-suspended in blocking

solution (PBS with 1.0% BSA and 0.1% Tween 20). Blocking was carried out for 30 min at room temperature. The cells were then

pelleted and re-suspended in binding solution (PBS with 1.0% BSA) containing a 1:100 dilution of a primary antibody against the

phosphorylated form of SMAD1/5/8 complex (Cell Signaling Technologies Cat# 13820). The staining proceeded for 12 �16 hr at

4�C with constant rocking. Afterward, cells were washed with 0.5mL PBS and re-suspended in binding solution containing a

1:500 dilution of a secondary antibody labeled with Alexa 594 (#A21207, ThermoFisher). Secondary detection proceeded for

60 min at room temperature with constant rocking. Finally, cells were then pelleted, washed with 0.5mL PBS filtered with a 40mm

mesh and analyzed by flow cytometry.

Time-lapse imaging
Fluorescent reporter cells were first mixed with an excess of non-fluorescent parental cells at a 1:9 ratio to simplify image segmen-

tation and data extraction. Cells were then plated at 1.6$104 cells/well in a 96 well plate equivalent roughly to 15%–20% confluency.

Cells were grown for 12 hr prior to ligand addition. Each position was imaged every hour starting from the addition of ligands until cells

became confluent after about 60 hr. Images were then analyzed for the number of fluorescent cells and fluorescent signal level.

Mathematical model for promiscuous interactions
Many signaling pathways comprise multiple ligand and receptor variants that interact promiscuously with one another, with varying

affinities, to form many distinct signaling complexes. BMP provides a canonical example of this architecture. However, other path-

ways, including TGF-b (SMAD2/3) signaling, FGF,Wnt, and JAK/STAT, also exhibit similar features. Here we develop a general math-

ematical model that captures essential aspects of receptor-ligand promiscuity in signaling pathways, and analyze it to understand

the functional capabilities this architectural feature provides for cellular signal processing. This model focuses on several features of

the natural BMP pathway: promiscuous ligand-receptor interactions, heterodimeric receptors (a simplified version of the natural Type

I-Type II receptor tetramers), and variation in the activities of different signaling complexes. To focus on the signal-processing capa-

bilities at the level of receptor-ligand interactions, we neglect other known features of the pathway including preliminary enzymatic

processing of ligands, non-canonical signaling, downstream feedback loops (e.g., through SMAD6/7), and crosstalk with other

signaling pathways. We specifically point out that while this model focuses on mixtures of ligand species, each ligand type is

composed of two subunits. Thus the model can be used equally well for mixtures of homodimers, heterodimers, or combinations
e4 Cell 170, 1184–1196.e1–e13, September 7, 2017



thereof. Finally, we note that while the model applies most directly to the BMP pathway, variants of it could also describe other sys-

tems that similarly form multi-part signaling complexes, including receptor aggregates, such as those listed above.

We consider a system with nL ligands, Lj, each of which can bind to one of nA type A receptor subunits, Ai, to form nL,nA
intermediate dimeric ligand-type A receptor complexes, Dij. These complexes can in turn bind to one of nB type B receptor

subunits, Bk , to form nL,nA,nB different trimeric signaling complexes, Tijk . We assume that the reactions are reversible where

the kinetics are first-order in each reactant, with forward reaction rates given by kDf ij and kTf ijk for the formation of dimeric and

trimeric complexes, respectively, and with reverse reaction rates similarly given by kDr ij and kTr ijk . These reactions can be summa-

rized as follows

Ai + Lj %
kD
f ij

kD
r ij

Dij (Equation 1)
Dij +Bk %
kT
f ijk

kT
r ijk

Tijk : (Equation 2)
Next, we can write the dynamical equations that describe these
 reactions:

dLj

dt
=
1

V

XnA
i = 1

�
� kDf ijAiLj + kDr ijDij

�
(Equation 3)
dAi

dt
=
XnL
j = 1

�
� kDf ijAiLj + kDr ijDij

�
(Equation 4)
dDij

dt
= kDf ijAiLj � kDr ijDij +

XnB
k = 1

�
� kTf ijkDijBk + kTr ijkTijk

�
(Equation 5)
dBk

dt
=
XnA
i = 1

XnL
j =1

�
� kTf ijkDijBk + kTr ijkTijk

�
(Equation 6)
dTijk

dt
= kTf ijkDijBk � kTr ijkTijk : (Equation 7)
Here, Lj denotes the concentration of the ligand in a volume V, and Ai; Bk ; Dij and Tijk are the absolute number of receptors and com-

plexes on the cell surface. We assume here that production and consumption are in a steady state enabling us to neglect the

consumption of receptors and ligands by endocytosis. Subunits combine to form various complexes; however, the principle of con-

servation of mass requires that the total number of each type of molecule remain constant:

L0
j = Lj +

1

V

 XnA
i = 1

Dij +
XnA
i = 1

XnB
k = 1

Tijk

!
(Equation 8)
A0
i =Ai +

XnL
j = 1

Dij +
XnL
j = 1

XnB
k = 1

Tijk (Equation 9)
B0
k =Bk +

XnA
i =1

XnL
j = 1

Tijk ; (Equation 10)
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where L0j is the total ligand concentration and A0
j and B0

i are the total receptor levels. Finally, each complex Tijk induces phosphor-

ylation of the intracellular signal, S, at some rate eijk so that the rate of change of the total signal is given by

dS

dt
=
XnA
i = 1

XnL
j = 1

XnB
k = 1

eijkTijk � gS: (Equation 11)
We consider the case where the volume for the ligand is large such that there are significantly more ligand molecules than receptors,

which can be expressed by V/N. This reflects our experimental conditions where the ligands are dissolved within a large excess of

cell culture media. With this assumption Equations 3 and 8 decouple and become

Lj = L0
j : (Equation 12)
Additionally, since binding and unbinding occur on fast timescales (minutes (Heinecke et al., 2009)) compared to the timescales of

reporter expression, we focused on the behavior of this system at steady state. In this regime, all time derivatives in Equations 4–7

vanish and the system can be solved to give

Dij = kDij AiLj (Equation 13)
Tijk =KT
ijkDijBk (Equation 14)
T T T D D D
where we define KijkhKf ijk=Kr ijk , and Kij hKf ij=Kr ij. Stronger affinity thus corresponds to larger values of the K 0s. Similarly, setting

Equation 11 to zero we get

S=
XnA
i = 1

XnL
j =1

XnB
k =1

εijkTijk ; (Equation 15)
with εijkheijk=g. Therefore, the final system of equations describing our model is given as follows

A0
i =Ai +

XnL
j = 1

Dij +
XnL
j =1

XnB
k =1

Tijk (Equation 16)
B0
k =Bk +

XnA
i =1

XnL
j = 1

Tijk (Equation 17)
Dij = kDij AiLj (Equation 18)
Tijk =KT
ijkDijBk (Equation 19)
S=
XnA
i = 1

XnL
j =1

XnB
k =1

εijkTijk : (Equation 20)
This system comprises a set of Nv = nA + nB + nAð1+ nBÞnL + 1 var
iables and Np = nA + nB + nAð1+ 2 � nBÞnL parameters.

Solving the steady-state equations
In order to find the total signal, S, we first need to solve the system of equations to find Tijk . Plugging Equation 18 into Equation 16

we find

Ai

 
1+

XnL
j0 = 1

KD
ij0Lj0

!
=A0

i �
XnL
j0 = 1

XnB
k0 = 1

Tij0k0
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Ai =
A0

i �
PnL

j0 = 1

PnB
k0 = 1Tij0k0

1+
PnL

j0 = 1K
D
ij0Lj0

: (Equation 21)
This can be used to solve for Dij
Dij =KD
ij

A0
i �

PnL
j0 =1

PnB
k0 =1Tij0k0

1+
PnL

j0 =1K
D
ij0Lj0

Lj (Equation 22)
which we can plug into Equation 19 to get a coupled set of N= nA,nL,nB quadratic equations for Tijk

Tijk =KT
ijkK

D
ij

 
A0

i �
PnL

j0 = 1

PnB
k0 = 1Tij0k0

1+
PnL

j0 = 1K
D
ij0Lj0

!
Lj

 
B0

k �
XnA
i0 = 1

XnL
j0 = 1

Ti0 j0k

!
: (Equation 23)
Solving Equation 23, we can then obtain the signal S using Equation 20.

The error function and least square minimization
In order to solve Equation 23, we minimize an error function, defined as follows:

EðTijkÞh
XnA
i = 1

XnL
j = 1

XnB
k = 1

"
KT

ijkK
D
ij

"
A0

i �
PnL

j0 =1

PnB
k0 =1Tij0k0

1�PnL
j0 = 1K

D
ij0Lj0

#
Lj

 
B0

k �
XnA
i0 = 1

XnL
j0 = 1

Ti0 j0k

!
� Tijk

#2
: (Equation 24)
Here, E is a function of the complete set of Tijk ’s. It is always positive, being a sum of squares, and vanishes if and only if Tijk is

a solution to Equation 23, which can now be written as

EðTijkÞ= 0: (Equation 25)
This equation is now in a form that can be solved numerically for any given set of parameters via standard optimization methods such

as MATLAB’s fmincon and lsqnonlin functions.

Dimensional reduction
The system of equations describing our model can be simplified by dimensional reduction, in which we redefine the variables to

reduce the number of parameters and make the remaining parameters dimensionless.

First, we change the units of signal strength using a scaling factor, a.

S/a,S
εijk/a,εijk :

(Equation 26)
By choosing a value of a= ðP εijkÞ�1, we can obtain units s
i;j;k uch that the phosphorylation rate constants for all complexes

sum to 1: X
i;j;k

εijk = 1: (Equation 27)
Similarly, changing the receptor units by rescaling with a factor b
 gives rise to the following transformation:

Ai/b,Ai

Bk/b,Bk

Dij/b,Dij

Tijk/b,Tijk

S/b,S
KT

ijk/b�1,KT
ijk :

(Equation 28)
By choosing b=
P

i;j;kK
T
ijk we effectively obtain units for the recep
tors and receptor complexes in which the KT

ijk sum to 1:X
i;j;k

KT
ijk = 1: (Equation 29)
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Finally, we can also independently choose new units for each individual ligand species:

Li/gj,Lj

KD
ij /g�1

j KD
ij

(Equation 30)
We can make these dimensionless by choosing g =
P

KD, such
j i ij that for every j,X
i

KD
ij = 1: (Equation 31)

Using these re-scaled variables and parameters, we can explore the complete parameter space by examining only parameter

values satisfying Equations 27, 29, and 31. These constraints reduce the number of independent parameters, Np, by 2+ nL.

The (2,2,2) model and parameter selection
In order to see what behaviors arise from the model of promiscuous interactions, we focused on a specific instantiation of the model

with NL = 2 ligands, NA = 2 A-type receptors and NB = 2 B-type receptors, which we describe as the (2,2,2) model. In this case there

are 20 independent biochemical parameters, KD
ij K

T
ijk and εijk , restricted by Equations 27, 29, and 31, and 4 receptor expression level

parameters A0
i andB0

k . In order to study all possible behaviors, random sets of parameters were chosen.We chose random biochem-

ical parameters distributed uniformly over the bounded domains defined by Equations 27, 29, and 31, while the receptor parameters

were chosen from a log-uniform distribution in the range ½10�3;103�. Simulationswere performed for 100,000 randomparameter sets,

and an entire 2D input-output function, across 15 3 15 log-uniform ligand concentrations, was numerically computed for each set.

Results are plotted in Figure S4A.

Phenotypical parameters
A useful representation of themodeling results can be achieved by extracting parameters that measure phenotypic characteristics of

the computation performed for each of the parameter sets. In this study we focused on two such parameters, the relative ligand

strength (RLS) and the ligand interaction coefficient (LIC), as diagrammed in Figure S4B–D. More specifically, we define RLS as

follows:

RLS=
Sweak

Sstrong

; (Equation 32)
where Sstrong and Sweak are the activation strengths of the pathw
ay when induced by the stronger or weaker ligand individually, at

saturating levels. In the case where one ligand is a potent activator while the second ligand is weak this index drops to 0. However,

when both ligands individually activate the pathway to a similar extent, this index approaches 1.

LICmeasures the effective interaction between the ligands at high ligand concentration ðLj [1Þ. We define the satmax and satmin

functions to be the maximal or minimal response, respectively, over varying ligand ratios, at saturating total ligand concentrations

(Figure S4B–S4D). Using these functions, the ligand interference index can be defined as

LIC=
satminðSÞ

Sweak

� Sstrong

satmaxðSÞ: (Equation 33)

For non-interacting ligands, we expect that mixed levels of ligands produce responses that lie within the range defined by the

effects of the individual ligands, in which case the coefficient vanishes. However, if a combination of ligands gives rise to a stronger

response than that of the stronger ligand individually, the first term generates a positive value for this index. On the other hand, if the

response to a combination of ligands is smaller than theweaker ligand, the second term dominates, and the index becomes negative.

The range for this index is therefore ½�1;1�.

The four archetypes and the structure of parameter space
Plotting the values of LIC and RLS for each simulation, we find that the response profiles form a continuous distribution that inter-

polates between 4 archetypal computations (Figures 4C and S4E). These archetypal computations generally map to different regions

in parameter space. Here we describe in more detail the parameter regimes that give rise to each of these archetypes.

Additive (Figure S6A)

The additive integration can be thought of as the ‘‘default’’ computation. It occurs when both ligands have equivalent receptor affin-

ities (KD
i1 � KD

i2, K
T
i1k � KT

i2k ) and they produce equivalently active complexes ðεi1k � εi2kÞ. In such a regime, similarly active complexes

form regardless of whether one ligand, the other, or both are present, and thus, the response does not depend on the composition of

the ligands but only on the total ligand concentration in the environment. This simple computation can occur evenwhen there is only a

single receptor variant ðnA = nB = 1Þ.
Ratiometric (Figure S6B)

Ratiometric computation occurs when the ligands produce signaling complexes with significantly different activity levels

ðεi1k [ εi2kÞ. When L1 is present, high activity complexes ðTi1kÞ form and the pathway is strongly activated. In contrast, when only
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L2 is present, only low activity complexes ðTi2kÞ form and the pathway is weakly activated. In a mixed environment, L2 will compete

with L1 for receptor binding, competitively inhibiting formation of the more active complexes, and thus reducing pathway activation

below its maximal level in a ratiometric manner. Note that this computation can also occur with only a single receptor variant

ðnA = nB = 1Þ, and that similar ratiometric sensing behaviors have been observed in other systems (Atkinson, 1968; Berg et al.,

2009; Escalante-Chong et al., 2015; Madl and Herman, 1979).

Imbalance detection (Figure S6C)

Imbalance detection can be thought of as a combination of two opposing ratiometric computations, and thus requires the existence

of at least two receptor variants,A1 with ε11k [ ε12k andA2 with ε21k � ε22k . Moreover, receptor-ligand affinities should be such that

each receptor preferentially binds to the ligand with which it forms the weaker complex, i.e., KD
11 <KD

12 and KD
22 <KD

21. In this regime,

when only a single ligand is present, it can bind both type A receptors, leading to formation of both the more active and less active

signaling complexes. However, when both ligands are present simultaneously, they compete for type A receptor, producing primarily

the high affinity signaling complexes, which, in this regime, are precisely those with weaker activity. Thus, in this case, the ligands

effectively reduce each other’s ability to activate the pathway.

Balance detection (Figure S6D)

Balance detection occurs in a similar way as the imbalance modes, except that the affinities favor the formation of the more active

signaling complexes. We still have ε11k [ ε12k and ε21k � ε22k , as with imbalance detection. However, for this computation,

KD
11 >KD

12 and KD
22 >KD

21, such that higher affinity receptor-ligand pairs now correspond to the higher activity complexes. Conse-

quently, as before, a mixture of ligands will produce mostly the higher affinity complexes (T11k and T22k ), but now these complexes

have higher, rather than lower, activity.

Furthermore, the balance detection effect can be enhanced by further reducing the activating effects of individual ligands.

Consider the case where only L1 is present. Lack of competition enables binding of L1 to both type A receptors giving rise to D11

and D21. If affinities of these dimeric complexes for B-type receptors obey KT
11k <KT

21k then there will be more trimeric complexes

of the form T21k than T11k . Assuming the high activity complexes are similarly active to each other, ε11k � ε22k , then ε21k � ε11k ,

and therefore, the enrichment for T21k will tend to decrease the total signal, further enhancing the balance detection effect.

Computations depend only on ligand ratios at high ligand concentrations
A striking feature of the computations performed by the ligand-receptor interactions (Figure S4A) is the appearance of diagonal con-

tours in the log-log ligand space. These reflect a general dependence of output on ratios of the two ligands. In fact, this behavior is

more general, occurring for any number of ligands and receptors, and can be understood from the model. This can be seen by exam-

ining Equation 23, where the ligand dependence is entirely through the factor

Lj

1+
PnL

j0 = 1K
D
ij0Lj0

=
1

1

Lj
+
PnL

j0 = 1K
D
ij0Rjj0

: (Equation 34)

Here, on the right-hand side, we have introduced Rjj0hLj0=Lj to represent the ratios between each pair of ligands. When ligand con-

centrations are large, Lj [1, the 1=Lj vanishes and the solution depends only on ratios between ligands and not on their absolute

levels.

Archetypal computations differ from Boolean logic gates
It is also interesting to note that the previous observation suggests a significant distinction between the observed computations, e.g.,

the archetypes in Figure 4, and Boolean logic functions. Superficially, the additive, imbalance and balance computations resemble

Boolean OR, XOR, and AND gates, respectively. However, a key feature of Boolean logic is the existence of threshold levels that can

be used to binarize inputs. For example, to behave like a Boolean AND gate, one would expect that when both inputs are each above

some threshold, the output should always be ‘‘on.’’ By contrast, in the computations analyzed here, no such thresholds exist. For

example, in an imbalance detection mode, consider two ligand concentrations L1 and L2 that individually activate, but produce a

weaker response together, i.e., appear to represent two ‘‘high’’ input levels that together produce a ‘‘low’’ output. Because output

depends only on ligand ratios, for any value of L1 chosen here, we can find a concentration of the second ligand, L02 >L2 that will

decrease the ligand ratio enough to generate a ‘‘high’’ output. Similar considerations apply for the balance detection computation.

Biological parameter range
In our analysis of model response profiles, we selected random values for dimensionless parameters, distributed across the entire

theoretical possible range. This allowed us to understand the full repertoire of theoretically possible responses.We then restricted the

analysis to biologically plausible values for each of the parameters to constrain the analysis to biologically relevant regimes. For

receptor expression, based on previous measurements of the number of TGF-b receptors in different cell lines (Wakefield et al.,

1987), we chose the total receptor counts A0
i and B0

k in a log-uniform distribution in the range ½0;9,104�. For the ligand levels L0i ,

we considered the range of experimentally utilized ligand concentrations: ½10�1;103� ng/ml. To make it comparable with the units

for the receptor we converted this range to units of molecules, assuming a typical molecular weight for BMP ligands of about
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30 kDa. This produced a concentration range of ½10�12;10�8�M. Multiplying by a typical eukaryotic cell volume of 2,103mm3, we es-

timate ligand numbers per cell volume in the range of ½1; 104� molecules.

When receptors and ligands are measured in number of molecules, the affinity parameters Kij and Kijk have units of molecule-1 (i.e.,

per molecule). Using estimates in the literature based on surface plasmon resonance measurements (Aykul and Martinez-Hackert,

2016), as well as theoretical models (Nicklas and Saiz, 2013), we conservatively selected affinities from a log-uniform distribution over

the range ½10�3;10�1�. Finally, the efficiency parameters εijk have arbitrary units that define the scale of the response and thus were

chosen uniformly in the range [0, 1] without loss of generality.

Using these ranges, we selected 100,000 random parameter sets and performed simulations to compute the input-output func-

tions for each parameter set across a 9 3 9 matrix of ligand concentrations. The results show that a full range of response profiles

could occur (Figures S5C and S5D). Further quantification of the relative frequencies of each response profile revealed a decreased

frequency of ratiometric responses and increased frequencies of other functions, compared with the unrestricted parameter screen

(Figure S5E).

Versatility search
A key aspect of the model is that it permits the cell to change the computation performed on a pair of ligands by modulating receptor

expression. In order to study the effect of receptor expression levels on the computation performed, we selected 1000 random

biochemical parameter sets. For each, we simulated the model with varying expression levels of each of the 4 receptor subunits

ðA1;A2;B1;B2Þ systematically chosen from a log-uniform distribution over the range ½10�3;103�. The distribution of LIC and RLS

values over the receptor expression levels was then calculated. These distributions were plotted for two specific biochemical param-

eter sets (one versatile and one non-versatile) in Figure 6A. The biochemical parameters are provided in Table S5.

Robustness to perturbations in receptor expression
Both theoretical and experimental analysis revealed that changes in receptor expression levels can reprogram the computation

performed by cells. This observation provokes the question of how the computation could vary in response to fluctuations, or ‘noise’,

in receptor expression levels (Elowitz et al., 2002).

We consider two types of fluctuations in receptor levels. First, there might be overall, correlated fluctuations across all receptors.

Such extrinsic noise might reflect global changes in expression machinery, as well as fluctuations due to cell growth and division.

Second, each receptor could vary stochastically in its expression, leading to independent fluctuations, or intrinsic noise. More quan-

titatively, we defined the receptor noise v as the coefficient of variation of receptor level. In addition, we defined aE and aI as the rela-

tive proportions of extrinsic and intrinsic noise, with aE +aI = 1.

To simulate the extrinsic noise, we generated a scale factor, s, drawn from a gamma distribution with shape parameter aE=v
2, and

scale parameter v2 (giving a mean of aE and variance aEv
2). Similarly, intrinsic noise was simulated by a choosing a receptor depen-

dent scale factor si, drawn from a gamma distributionwith shape parameter aI=v
2 and scale parameter v2 (mean aI and variance aIv

2).

To add noise to the receptor expression levels we multiplied the mean receptor level, R0
i , by a combined scale factor ðs+ siÞ. This

combined scale factor has mean 1 and variance v2, giving rise to the desired coefficient of variation.

We then set out to analyze cellular sensitivity to receptor perturbation across the spectrum of ligand computations. We randomly

chose 100 parameter sets from each of 5 regions in the phenotypic space defined by RLS and LIC. These regions were chosen to

represent the additive (�0.05 < LIC < 0.05, RLS > 0.8), ratiometric (�0.05 < LIC < 0.05, RLS < 0.2), imbalance (LIC <�0.1, RLS > 0.8),

and balance (LIC > 0.1, RLS > 0.8) archetypes, aswell as an intermediate region (�0.05 < LIC < 0.05, 0.4 < RLS < 0.6) that represented

part of the spectrum of input-output functions but was not specifically associatedwith a single archetype. For each parameter set, we

performed perturbations using 3 types of noise: purely extrinsic noise ðaE = 1;aI = 0Þ, purely intrinsic noise ðaE = 0;aI = 1Þ, or a com-

bination of extrinsic and intrinsic noise ðaE = 0:5;aI = 0:5Þ. To enable comparison of the effects of each type of perturbation, we used a

fixed coefficient of variation, v = 0:25.

Representative examples for each region (Figures S7D–S7F) show the spread of the resulting functions in phenotypic space. We

find that extrinsic noise generates comparatively small quantitative changes in response profiles relative to intrinsic noise, with the

combination of extrinsic and intrinsic noise showing an intermediate effect. To systematically characterize the variation in phenotypic

space, we analyzed the distribution of the standard deviations of the change in RLS and LIC across all perturbations for each param-

eter set (Figures S7G and S7H). While these differences are generally insufficient to change the class of input-output function

observed, we find that intrinsic noise produces greater variability in the phenotypic parameters. These results suggest that the

observed input-output functions in the model of the BMP signaling pathway depend primarily on relative ratios of receptor levels

rather than absolute numbers.

Finite volume of extracellular space
In the experimental context, cells were exposed to a large volume of media such that the total amount of ligand was much greater

than the number of receptors. Using this high volume assumption results in constant ligand levels, even as they bind receptors to form

active complexes (Equation 12). However, this regimemight not necessarily be applicable to all in vivo contexts where the exact ratio

of ligands to receptors could vary, and titration of ligands by receptors can affect their concentration. Therefore, it is noteworthy to

consider also the case of a finite volume. Under these conditions, the steady-state equations, (Equations 16–20) become
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L0
j = Lj +

XnA
i = 1

Dij +
XnA
i = 1

XnB
k = 1

Tijk (Equation 35)
A0
i =Ai +

XnL
j = 1

Dij +
XnL
j = 1

XnB
k = 1

Tijk (Equation 36)
B0
k =Bk +

XnA
i = 1

XnL
j = 1

Tijk (Equation 37)
Dij =KD
ij AiLj (Equation 38)
Tijk =KT
ij DijBk (Equation 39)
S=
XnA
i = 1

XnL
j = 1

XnB
k = 1

εijkTijk : (Equation 40)
Plugging Equations 38 and 39 in 35–37 we get:
L0
j = Lj

 
1+

XnA
i = 1

KD
ij Ai +

XnA
i = 1

XnB
k = 1

KT
ijkK

D
ij AiBk

!
(Equation 41)
A0
i =Ai

 
1+

XnL
j = 1

KD
ij Lj +

XnL
j = 1

XnB
k =1

KT
ijkK

D
ij LiBk

!
(Equation 42)
B0
k =Bk

 
1+

XnA
i = 1

XnL
j = 1

KT
ijkK

D
ij AiLj

!
; (Equation 43)
which can be numerically solved as before. We see that the distr
ibution of behaviors remains similar with all four behaviors arising

even in the finite volume regime (Figure S5A).

Additionally, one can also ask how the finite volume assumption impacts the computations. To test this, we considered both

models for every set of parameters and compared the resulting behavior. While the two models give rise to qualitatively similar

responses to increasing ligand levels, they differ specifically at intermediate ligand levels (Figure S5B), where the finite model pro-

duces a sharper dependence on ligand concentration, or, equivalently, a reduced input dynamic range.

Signaling modifiers
In addition to receptors and ligands, other secreted and cell bound proteins could in principle reshape the activity of pathway

elements. In the BMP pathway many such modifiers are known, including secreted ligand-binding molecules (e.g., Twsg, Chordin,

Noggin) and pseudo-receptors (e.g., BAMBI). While these factors were not explicitly modeled, they can be incorporated within the

same formalism. Ligand binding molecules can generally form complexes with ligands, just as the receptors do. Therefore, mathe-

matically they are equivalent to type A receptors, with affinities that can be specified in the corresponding elements ofKD
ij . Since these

modifiers are secreted, the resulting complexes will not form complexes with type B receptors, and will not produce active signaling

complexes. In themodel, this can be represented by 0 values for the corresponding elements of bothKT
ijk and εijk . We thus see that the

secreted ligand-binding modifiers are mathematically equivalent to orphan type A receptors. Pseudo-receptors similarly have

0 values of εijk, but could have non-zero values for KT
ijk .
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We therefore see that the modeling framework can naturally extend to include many biologically relevant components of the BMP

pathway. While these elements do not play critical roles in the in vitro setting explored in this manuscript, they could playmore impor-

tant roles in vivo.

Nonlinear signal accumulation
Another assumption in themodel is that the receptors all contribute linearly to the overall total phosphorylation rate (Equation 11). This

assumption holds when the dephosphorylation rate is large compared with the phosphorylation rate, such that there is a large pool of

dephosphorylated SMAD protein. A similar assumption was utilized in various models of the BMP and TGF-b pathway such as in

(Vilar et al., 2006), and is motivated by experimental results of the TGF-b dependent phosphorylation and dephosphorylation rates

(Inman et al., 2002). Since distinct cell types can differ in their kinase level, among others, it is biologically interesting to consider what

happens in a regime where this assumption does not hold. The full equation describing the phosphorylated SMAD signal ðSpÞ should
be written as

dSp

dt
=
XnA
i =1

XnL
j = 1

XnB
k = 1

eijkTijkSu � gSp; (Equation 44)
where Su is the amount of unphosphorylated SMAD and g is the dephosphorylation rate. Using Stot =Su +Sp, we get

dSp

dt
=
XnA
i = 1

XnL
j = 1

XnB
k = 1

eijkTijkðStot � SpÞ � gSp: (Equation 45)
Solving for the steady-state solution one finds

Sp =

PnA
i = 1

PnL
j = 1

PnB
k = 1εijkTijk

1+
PnA

i = 1

PnL
j = 1

PnB
k = 1εijkTijk

Stot (Equation 46)
where we define εijk = eijk=g as before. From this we see that for slow total phosphorylation rates,
PnA

i = 1

PnL
j =1

PnB
k =1εijkTijk � 1, we

recover the linear behavior (Equation 20). However, when the phosphorylation rates become faster, compared to the characteristic

dephosphorylation rate, the response reaches saturation. It is important to note that overall the signal is still determined by a

monotonically increasing function of the weighted sum of all trimeric complexes. Therefore, while the quantitative nature of the com-

putations can depend on the exact ratio between phosphorylation and dephosphorylation rates, the qualitative behaviors remain

similar.

Additional features of the BMP pathway
The model above neglects a number of known features of the natural BMP pathway in order to focus on the specific effects of

promiscuity, and to demonstrate its sufficiency for explaining observed computations. These other features are likely to play

additional functional roles in the signaling pathway. One example is the dynamical nature of the receptor-ligand interactions, arising

from receptor internalization, trafficking, and degradation.While the steady-state response studied in this paper is consistent with the

BMP data, the parallel TGF-b branch of the pathway appears to respond transiently (adaptively) in some contexts (Warmflash et al.,

2012). Alternative models (Vilar et al., 2006; Zi et al., 2012) were previously developed that focused on these dynamical aspects of the

TGF-b response, and showed how these dynamics can give rise to either transient or sustained responses, as well as absolute or

relative ligand response profiles, although not the balance and imbalance detection modes described here.

Spatial heterogeneity
The plasma membrane has been shown to contain microdomains differing in lipid and protein composition, or interactions with the

cytoskeleton, which could in principle affect spatial and temporal receptor distribution (Delos Santos et al., 2015). This provokes the

question of how receptor localization in microdomains could affect the computational behavior of the system. For example, a given

receptor could be partially or completely segregated into certain domains which may or may not overlap with the localization of other

receptors. Such effects can bemodeled by replacing the existing affinity parameters with effective affinity parameters. Specifically, if

two receptors are localized to completely different microdomains their effective affinity would be zero. By contrast, if they have a

slight preference for distinct microdomains, their effective affinities would only be reduced. Representing domain preference this

way provides two potential advantages for the system. First, it enables more flexibility in reaching diverse effective affinities among

components. Second, if microdomain localization can be regulated by the cell, it can allow for dynamical tuning of effective affinity

parameters, an additional mode of control.
e12 Cell 170, 1184–1196.e1–e13, September 7, 2017



QUANTIFICATION AND STATISTICAL ANALYSIS

Average and variability analysis
All single cell flow cytometry data were averaged by taking the population median. Repeats were averaged by taking the mean of at

least 3 repeats. Variability was assessed either using standard deviation or standard error of the mean, as indicated in the legend. To

remove bias due to day-to-day variability we normalized each repeat by an overall scale factor. This was determined using total least

square fit between each two experiments.

Assignment of integration modes in survey
In the survey (Figure 2A), for each ligand pair, (L1, L2), five different combinations (Figure S1G) were measured: L1, L2, L1+L2, L1+L1,

L2+L2, where the latter two indicate double the base concentration of a single ligand. Of these 5 combinations, the first three were

assayed four times each, while the latter 2 were measured in duplicate. To estimate the relative likelihood of each ligand integration

mode (Types I-IV in Figure S1G), we examined all 256 possible measurement combinations. For each one, we determined the

corresponding integration mode based on the classification scheme in Figure S1G. The relative likelihoods were then estimated

by calculating the frequency of each integration mode. This is plotted in Figure S1H, as shown in the inset.

RNaseq Analyses
Total RNA was collected from cells using the RNeasy Mini Kit (QIAGEN) following the manufacturer’s instructions. Sequencing

libraries were constructed using NEBNext Ultra RNA-seq kit (NEB #E7530) and sequenced on Illumina HiSeq2500. Results were

then analyzed using the web-based Galaxy platform (https://usegalaxy.org/). Alignment was performed using the TopHat algorithm

followed by transcript assembly and FPKM estimates using the Cufflinks algorithm.

DATA AND SOFTWARE AVAILABILITY

Flow cytometry data was analyzed in MATLAB using a custom software (EasyFlow). Mathematical model simulations were

performed and analyzed inMATLAB. All the analysis code is available upon request (see Contact for Reagent and Resource Sharing).

The RNAseq data reported in this paper have been deposited with the accession number GEO: GSE98674.
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Figure S1. Ligand Pairs Can Show Complex Integration Modes, Related to Figure 2

(A) NMuMG BMP reporter cells were stimulated with different concentrations of BMP4 (colored dots) and analyzed by flow cytometry for both reporter H2B-

Citrine expression (x axis), and immunostaining of phosphorylated SMAD1/5/8 (y axis). Note strong correlation both within (scatter, single cells) and between

(larger circles, population average) ligand concentrations.

(B) qPCR measurements show endogenous BMP-responsive gene expression levels correlate with H2B-Citrine reporter expression. Plots show relationships

between H2B-Citrine and specific indicated target genes.

(C) Correlation coefficients for each pair of target genes shown in (B).

(D) Flow cytometry of reporter H2B-Citrine expression showed unimodal distributions 24h after stimulation across the indicated range of BMP4 concentrations

(colors).

(E) Dynamics of phosphorylated SMAD1/5/8 were measured using immunoblotting at time-points up to 48 hr after BMP addition. After a short transient of a few

hours, phosphorylated SMAD1/5/8 levels remained constant. The plot shows mean and SD (error bars) of 3 independent repeats.

(F) Reporter cells were exposed to different concentrations of BMP4 (left) or BMP10 (right). Fluorescence was monitored using time-lapse microscopy over

more than 48 hr. Continuous increases in mean fluorescence per cell occurred in most conditions. This result contrasts with the adaptive dynamics observed

in response to stimulation by TGF-b ligands (Warmflash et al., 2012). Vertical dashed line indicates the 24 hr time point used for most experiments in the paper.

(legend continued on next page)



(G) 4 modes of ligand integration are shown schematically. Type I is characterized by a strong response to mixed ligands (green), with weaker responses to the

individual ligands (gray). Type II is characterized by a weak response to mixed ligands (red), in comparison to individual ligands. In cases where the mixed

response is intermediate (dark blue), two additional integration modes can be realized: The type III integration mode is characterized by decreased activity in

response to removal of one ligand (dark blue to light blue). Finally, a type IV integration mode occurs when removal of one of the ligands causes an increase in the

response (dark blue to purple).

(H) Using the low resolution ligand survey (Figure 2A), all pairs of ligands were classified across these 4 integration modes. For every pair, the likelihood of each

mode was calculated (STARMethods) and the corresponding square was colored by bands with widths proportional to the relative likelihood of each mode. The

appearance of multiple colors in the same square thus indicates uncertainty about the integration mode.
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Figure S2. Cellular Response to Specific Relations between Ligands Can Be Seen Theoretically and Experimentally with Different Reporter

Lines, Ligand Sources, and Readouts, Related to Figures 2 and 3

(A) For each ligand pair, experimentally measured pathway activity is plotted across all points in the ligand matrix, as a function of either the adjusted ratio of the

two ligand concentrations (upper plot) or the sumof the two ligand concentrations (lower plot). Most of the variation in activity in BMP4-BMP9 can be explained by

the sum of the two ligands (left plots). For BMP4-GDF5, the data are better explained as a function of an adjusted ratio, where the GDF5 concentration was offset

(legend continued on next page)



by a constant, representing the threshold above which the response becomes approximately ratiometric. For BMP4-BMP10, the response approximately follows

a non-monotonic function of the ratio.

(B) Similar plots for the archetypes were generated in the model.

(C) An independent BRE-based sensor cell line was generated fromNMuMGusing a different integration technique (PiggyBac, STARMethods). It was exposed to

the same BMP ligand pairs, giving rise to similar combined responses (cf. Figures 2C–2E).

(D) Ligands acquired from a different source (Peprotech, STAR Methods), show similar responses to those acquired from R&D Systems (cf. Figures 2D and 2E).

(E and F) Phosphorylated SMAD1/5/8 was analyzed using immunoblotting in cells exposed to single ligand, ligand combinations, or no ligand. BMP4 and BMP10

exhibited imbalance detection (E), while BMP4 and GDF5 exhibited a ratiometric response (F).

(G) ERK phosphorylation in response to BMP ligands was analyzed using immunoblotting. While both ERK1 and ERK2 respond dose-dependently to EGF1, they

show no response to BMP4, BMP10 and GDF5. In (E)–(G), results are normalized to the un-activated condition, and represent the mean and SD of at least 3

independent repeats.
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Figure S3. Ligand Response Profiles Are Stable over Time and in Response to Perturbations of Feedback Loops and HSPG Components,

Related to Figure 3

(A) Cells were stimulated with combinations of BMP4 and BMP10. Pathway responses were analyzed at different time points after ligand addition. Absolute

fluorescence levels increased over time. However, the imbalance response is visible at all time points, from 6 to 96 hr after stimulations.

(B) BMP4-BMP10 antagonism from (A) was quantified as the ratio of the least active individual ligand to activation by both ligands. This quantity was stable over

the duration of the experiment. Error bars indicate SD calculated from three independent experiments.

(C–E) SMAD6 knockdown does not disrupt ligand integration. The input-output response is plotted for cells treatedwith siRNA against Smad6 (siSmad6) or with a

random sequence (siRND) (C). qPCR analysis shows that siRNA treatment reduced Smad6 transcript by �90% (D). Error bars indicate SD calculated from three

independent experimetns. The results with siRNA for Smad6 were plotted against those with a random siRNA sequence (E). Each dot represents a single ligand

combination. Different colors represent different ligand pairs and the black line represents the line y = x for reference.

(legend continued on next page)



(F) Cells were stimulated with BMP9 and BMPR2 protein levels were measured at several time points after stimulation using immunoblotting. BMPR2 protein

levels were normalized by GAPDH protein levels and the fold change from t = 0 was plotted. Error bars represent SD between 3 independent repeats.

(G–J) The role of HSPGs was analyzed by inhibiting its biosynthesis using NaClO3 (G) or by enzymatically removing HSPG using heparinase (H). Results with and

without treatment show a high level of correlation around the line y = x plotted in black in (I) and (J).
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Figure S4. Analysis of Ligand Integration Functions in the Mathematical Model, Related to Figure 4

(A) Different biochemical parameter sets generate a range of 2-ligand integration functions. Here, we plotted the steady-state response for 50 randomly selected

parameter sets (grid of heatmaps). These responses are not organized spatially. Note the broad range of behaviors and the general dependence on ratiometric

features at high total ligand concentrations, reflected by the diagonal contours.

(B) 2-ligand response profiles can be parameterized by Relative Ligand Strength (RLS) and Ligand Interference Coefficient (LIC). These coefficients are deter-

mined by four activity levels that can be extracted from the high total ligand regime: the activity generated by theweaker (a) and stronger (b) ligands individually, as

well as the maximal (c) and minimal (d) activity over the entire high ligand region, denoted by satmax and satmin, respectively.

(C and D) Determination of RLS and LIC for balance (C) and imbalance (D) detection.

(E) For each (LIC,RLS) coordinate pair, we computed the mean response functions for 5 biochemical parameter sets generating phenotypic parameters close to

the indicated (LIC, RLS) point (location of heatmap). Inset zooms in on one specific (RLS,LIC) point.

(F andG) Activity parameters can produce distinct response profiles from the same set of affinity parameters. (F) For a specific set ofKij ; Kijk values, indicated, the

level of each trimeric signaling complex, Tijk , is plotted as a function of the concentrations of two ligands. (G) The total pathway response depends in general on

the levels of all trimeric complexes, eachmultiplied by a corresponding activity parameter. Here we plot 4 specific sets of activities ðεijkÞ, each of which generates

a distinct response profile, despite using the same affinity parameters.
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Figure S5. Changing Model Assumptions Has Mild Effects on Ligand Computations, Related to Figure 4

(A) 100,000 simulations were performed on randomly chosen parameter sets with (bottom) and without (top) allowing for consumption of ligands by cells. The

calculated ligand interference coefficient and relative ligand strength (cf. Figures S4B–S4D) show similar distributions and produce all computations in

both cases.

(B) Parameter sets corresponding to the 4 archetypes were selected and the full 2D input-output matrices are plotted for models with (center) and without (left)

ligand consumption. The difference (right column) between the twomodels (constant ligand, left, versus consumed ligand, middle) demonstrate that the effects of

ligand consumption are most significant at intermediate ligand levels, giving rise to a sharper signal response.

(C and D) 100,000 parameter sets were randomly selected either from the complete theoretically available parameter space, assuming a uniform distribution for

the dimensionally reduced parameters (C) or from a biologically relevant range, based on previously measured values for BMP affinities (STAR Methods) (D).

Resulting response profiles are plotted in the RLS-LIC space (see Figure S4). Specific regions in the neighborhood of each archetype are shown (colored boxes).

(E) The percent of parameter sets giving rise to each response type is shown for the unrestricted parameter selection (black) and for parameters restricted to the

biologically relevant range (gray). To estimate uncertainty, we calculated SD between 10,000 bootstrapped samples of size 100,000.
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Figure S6. Archetypal Computations Emerge from the Interplay between Receptor Preference and Signaling Complex Activity in the Model,

Related to Figure 5

For each archetypal computation (rows), the left-hand schematic represents a parameter regime sufficient for the computation (re-plotted from Figures 5A–5D).

Arrow thicknesses represent the relative affinities or activities of indicated complexes. Arrow color represents the identity of the ligand in a given complex. To the

right, the response profile across ligand compositions is shown (plot). The behavior of the system is also indicated schematically above the plot for three ligand

composition regimes: only one ligand present (left and right) or an equal mixture of ligands (center). Hollow ligands represent those not present in each case. In

each regime, some reactions do not occur (because a particular ligand is not present) or are disfavored (because of competition). Arrows for these reactions are

omitted in the corresponding regimes. The total activity of the system in each of these three regimes is indicated by the number of copies of the phosphorylated

second messenger.
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Figure S7. Receptor Expression Levels Reprogram Ligand Response Profiles, Related to Figure 6

(A) The relative ligand strength (RLS) and ligand interference coefficient (LIC) are plotted for each ligand pair (shape), for different cell lines (fill style).

(B) RLS and LIC are plotted for each ligand pair (shape), for wild-type (filled), and each indicated receptor perturbation (hollow).

(C) Expression levels of all 7 BMP receptors in NMuMG cells were measured using qPCR, for each receptor perturbation (indicated) to quantify the effect size and

specificity of knockdown or overexpression. Values represent fold expression relative to Sdha expression, relative to control cells, either wild-type (for receptor

overexpression) or a non-specific siRNA (for receptor knock down). Error bars represent SEM from 4 independent measurements.

(D–F) Effects of noise in receptor expression on ligand integration mode. We analyzed the effects of noise on 5 specific parameter sets representing different

response profiles (colors). For each parameter set, we analyzed 25 randomly perturbed receptor expression profiles chosen from a gamma distribution with a

(legend continued on next page)



coefficient of variation (CV) of 0.25. Each resulting interaction profile is plotted in the LIC-RLS phenotypic space. When the noise is extrinsic (correlated between

all receptors) its effect in the phenotypic space isminimal, as shown by relatively small scatter of colored dots (D). Intrinsic noise (uncorrelated fluctuations in each

receptor) increases the scatter (E and F).

(G and H) To generalize these results, we repeated the procedure in (D)–(F) for 100 parameter sets from each of the 5 regions (balance, imbalance, additive,

ratiometric and intermediate regions). For each choice of receptor level, LIC and RLS parameters were calculated and the SD for the 25 choices was calculated.

The cumulative distribution function of the SD in either the RLS (G) or LIC (H) is shown to indicate the distribution of sensitivities of ligand integration behavior to

each category of noise.
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