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SUMMARY

Many biological circuits comprise sets of protein variants that interact with one another in amany-to-many, or
promiscuous, fashion. These architectures can provide powerful computational capabilities that are espe-
cially critical in multicellular organisms. Understanding the principles of biochemical computations in these
circuits could allowmore precise control of cellular behaviors. However, these systems are inherently difficult
to analyze, due to their large number of interacting molecular components, partial redundancies, and cell
context dependence. Here, we discuss recent experimental and theoretical advances that are beginning
to reveal how promiscuous circuits compute, what roles those computations play in natural biological con-
texts, and how promiscuous architectures can be applied for the design of synthetic multicellular behaviors.
INTRODUCTION

With theevolutionary transition fromsinglecells tomulticellular life,

cells facedanexpandedset of information-processingchallenges.

They had to support large numbers of distinct cell fates, decipher

complex signals fromother cells, and tailor their behavior depend-

ing on their own state, history, and local environment. Many of the

protein circuits, or pathways, that evolved to address these

challenges share a particular feature. They employ families of

homologous, but subtly different, protein variants interacting in a

many-to-many, or promiscuous, manner with one another, and

withmembers of other protein families. These variants likely arose

from duplications of simpler ancestral pathways1–5(Figure 1A).

Typically, different cell types express different combinations of

variants, generating a set of related, but distinct, versions of any

given circuit6 (Figure 1B). While specific components and interac-

tions within these circuits are often well-studied, it is still generally

unknown how their components collectively respond to diverse

combinations of inputs, and how those responses change de-

pending on the specific components expressed in each cell

context. Recent work is beginning to shed light on these issues,

revealinghowpromiscuouscircuitscansupport thecomplex infor-

mation-processing requirements of multicellular life.

Promiscuous protein interaction circuits are prevalent

throughout biology. Developmental cell-cell communication path-

ways such as bone morphogenetic protein (BMP),7 Notch,8 JAK/

STAT,9,10Wnt,11,12 fibroblast growth factor (FGF),13 andepidermal

growth factor (EGF),14 comprise sets of distinct ligands, each of

which interacts promiscuously with multiple receptor variants
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(Figure 1C). Promiscuity is also conspicuous in the interactions

of receptors with downstream effectors. For example, individual

G-protein-coupled receptors (GPCRs) interact with multiple

effector G proteins in an overlapping, promiscuous manner15

(Figure 1D). Transcriptional regulation, too, is replete with promis-

cuity. Families of transcription factor variants, such as NF-kB,

basic helix-loop-helix (bHLH), bZIP, and POU/Sox, interact pro-

miscuously to form diverse homo- and heterodimeric complexes

(Figure 1E) that vary in their DNA-binding specificity and activate

or repress overlapping sets of target genes.16–18 Transcription fac-

tors also interact promiscuously with co-factors, as has been

analyzed extensively for the Mediator complex19 and the homeo-

box genes.20 Extracellularly, families of cadherin variants interact

promiscuouslywithoneanother tocontroladhesionbetweenadja-

cent cells21–24 (Figure 1F). In many of these examples, proteins

may form higher order, oligomeric complexes with more than

two components, adding additional complexity to the system.

These examples show that combinatorial protein networks occur

at multiple levels with multiple protein families.

It canbe tempting to regardprotein interactionpromiscuitymore

as a nuisance—perhaps an artifact of gene duplication in evolu-

tionary history—than a feature. On the other hand, complexity sci-

ence, neurobiology, andartificial neural networksshowthat simple

elements, connected together in amany-to-many fashion, can act

as powerful computational systems.25 By computation, we mean

the ability to process input information encoded inmultiplemolec-

ular signals in flexible and complex ways. Computations are usu-

ally understood to comprise three distinct levels: a function to be

computed, an algorithm to implement that function, and the
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Figure 1. Diverse cellular pathways exhibit many-to-many interactions among protein families
(A) Extant pathways, such as signaling from one component (circle) to another (square) can evolve from simpler ancestral pathways through gene duplications,
resulting in many-to-many interaction networks (right).
(B) Different cell types (gray) typically express different protein variant profiles (schematic bar plots).
(C) Intercellular communication systems often comprise multiple ligand (upper) and receptor (lower) variants that interact in a many-to-many fashion, with each
ligand binding to multiple receptors and each receptor binding to multiple ligand variants.
(D) In signal transduction systems, receptor variants (upper) interact with variant intracellular signal transducers, or effectors, in a many-to-many fashion.
(E) Eukaryotic transcription factor variants can often bind to one another to form a repertoire of distinct dimers, each with distinct DNA-binding specificities.
(F) In cell adhesion process, protocadherin variants interact with other protocadherins in adjacent cells, also in a many-to-many fashion.
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physical media that can execute that algorithm.26 The first two are

abstract descriptions of how inputs become outputs and are

agnostic of physical implementation. By contrast, the properties

of a particular physical mediummay constrain the functions or al-

gorithms it can implement. Here, we consider protein-protein

dimerization networks as physical media for computation in cells

and discuss the algorithms and functions they can compute. We

are interested in both what higher-level functions these networks

support, as well as how this logic can be physically realized by a

varietyofprotein families. Inall these respects,weconsiderprotein

dimerization networks as a powerful architecture for computation

in cells.

The interconnectedness of protein and metabolic networks

within the cell has long been recognized as providing the poten-

tial for computations in cells.27–29 Previous works have largely

focused on how interacting biomolecules could implement as-

pects of digital computing, such as Boolean logic gates27,30 or

neural networks.28,31 It has generally been more challenging to
determine what computations are implemented natively by nat-

ural biomolecular circuits in living cells. Better understanding the

range of native computations that arise in these settings could

explain how cells, with many distinct properties from silicon

chips, compute complex responses to their diverse input signals

and, more specifically, how these computational capabilities

address the unique challenges of multicellularity.

When many protein complexes can form through combinato-

rial dimerization of a smaller number of monomeric components,

their distribution will in general depend on the abundances of

each protein and their pairwise interaction strengths (e.g., affin-

ities), as well as other inputs. These dependencies can be

nonlinear and indirect, such that perturbing one protein level

can affect the concentrations of complexes in which it does

not appear. Further, distinct complexes can, in general, have

distinct target specificities or activity levels. As a result, inputs

that modulate one or more protein components can be pro-

cessed by the combinatorial dimerization network in non-trivial
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ways to produce computations. These computations can sup-

port higher-level functions in signaling, adhesion, and transcrip-

tional regulation.7,18,32,33

This type of computation occurs at two levels. First, within an

individual cell or cell type, systems can compute a specific func-

tion of multi-protein inputs. Second, the function that is

computed can vary between different cell states (i.e., be context

dependent). This is possible because cell states, in general, ex-

press different subsets of the circuit’s molecular components, as

single-cell atlas datasets have revealed.6 Each configuration

(and thus each cell state) may compute a distinct functional

response to the same environmental inputs. A single combinato-

rial system then provides not just one cellular computation, but a

whole repertoire of different computations in different cell states.

Here, we argue that combinatorial protein dimerization net-

works represent a general biological strategy to implement

context-dependent computations in cells. We further show

how this viewpoint provides a unifying framework to explain a

diverse array of biological processes, including signaling, gene

regulation, and cell-cell adhesion. More specifically, we first

highlight recent work that reveals computations in promiscuous

protein-protein interaction systems and how they arise. We then

discuss possible biological functions of these computations.

Finally, we explore experimental and computational approaches

to understand and manipulate them.

Throughout, we focus on computations that emerge from net-

works of combinatorial protein-protein binding interactions within

pathways. We omit additional complexity that can emerge

through interactions between different pathways,34 combinatorial

allosteric control of individual protein activities,35–37 as well as

computations within enzymatic and metabolic networks. We

also leave out important work in neural circuits such as olfaction,

which depends on many-to-many interactions between odorants

and receptors, as these systems rely on neural circuitry for most

signal processing and receptor expression is limited to one per

cell, precluding formation of diverse protein complexes. Lastly,

because we primarily focus on protein-protein dimerization as a

mechanism, we do not discuss the fascinating computational ca-

pabilities produced by other circuit features, such as the regula-

tion of protein activity by co-factor binding, expression-mediated

feedback, and post-translational modifications.

PROMISCUOUS PROTEIN-PROTEIN INTERACTION
SYSTEMS COMPUTE FUNCTIONS OF MULTIPLE INPUT
PROTEINS

Combinatorial protein networks are based on protein complex

formation (Figures 1C–1F, black and white illustrations). These
Figure 2. Many-to-many interaction systems can provide key function
(A) In cell-cell signaling, many-to-many interactions between ligands and recepto
than broadcasting messages to any cell expressing receptors (left). This works b
centration space. Amodel of BMP signaling showed that particular parameters for
receptor configurations, depending on the ligand concentrations (middle, right).
(B) In cell-cell adhesion, combinations of Pcdh isoforms (different colors) can en
(C) In gene regulation circuits, dimerization of bHLH transcription factors partitions
expression can thus alter dimer abundance to produce nuanced effects on targe
(D) Naturally occurring protein-protein dimerization networks can guide the de
MultiFate-2 system includes a synthetic transcription mechanism that, similar
scriptional activation domains. These programmed interactions (left) give rise to d
factor dimers, analogous to differentiated cell states.
systems consist of one or more sets of protein variants that

can combinatorially assemble into a zoo of different protein com-

plexes. In some cases, the complexes contain only one class of

protein, of which there are many variants. For example, different

bHLH transcription factors can promiscuously dimerize with one

another to produce many distinct homo- and heterodimers

(Figure 1E). In other cases, complexes contain two or more types

of proteins, each of which may comprise many variants. For

instance, a set of ligand variants can form many potential

signaling complexes with a set of receptor variants (Figure 1C).

In either case, each of the resulting complexes can exhibit a

different level of activity or affect a different set of molecular tar-

gets. Further, when certain protein concentrations are limiting,

competition to form complexes can lead to non-intuitive behav-

iors. Perturbing the abundance of one or more individual input

protein components can directly affect the concentrations of

complexes and indirectly affect the concentrations of other com-

plexes. Considering certain proteins as ‘‘inputs’’ and the activity

or effects of the complexes as ‘‘outputs,’’ the overall network can

thereby perform a variety of input-output computations, depend-

ing on the concentrations of each component, and the binding

energies or affinities for each possible interaction (Figure 2A).

Mathematical models of competitive complex formation can

capture many of the effects described above, allowing us to

explore what kinds of computations are possible within different

combinatorial protein network architectures. In addition, they

reveal how those computations depend on the overall interaction

architecture and biochemical parameters (Box 1). For example,

models of receptor-ligand interactions have revealed how

signaling pathways can compute Boolean and other types of

combinatorial responses to multi-ligand inputs, two examples

which we explore below. These examples show how diverse

ligand-receptor affinities and signaling complex activities,

defining features of combinatorial protein networks, can produce

complex functions.

Computation of Boolean logic for two ligand inputs
An early theoretical study of combinatorial receptor-ligand inter-

actions was performed by de Ronde et al.38 The authors explored

a set of ligand-receptor interaction architectures and compared

their ability to produce different Boolean logic gates. To do this,

they adapted the equilibrium statistical mechanics description of

allostery, provided by the classical Monod-Wyman-Changeux

model,39 to describe how ligand binding alters the conformation

of receptors to activate a pathway. In one scheme, they consid-

ered a dimer of two receptor subunits, in which one subunit could

bind promiscuously to two ligand variants, while the other could

bind only to one. By tuning the affinities of each ligand for each
al capabilities
rs allow ligands mixtures to ‘‘address’’ messages to specific cell types, rather
y generating responses in specific regions of a multi-dimensional ligand con-
receptor-ligand interactions allow a single ligand pair to activate up to 8 distinct
In each plot, the x and y axes show concentrations of two ligands, L1 and L2.
code cellular identity, allowing neurons to distinguish self from non-self.
the protein variants into active and inactive dimers. Perturbations of monomer
t gene expression.
sign of synthetic circuits for more complex computations. For example, the
to bHLH transcription factors, includes dimerization, DNA binding, and tran-
iverse stable cell states (right) defined by concentrations of active transcription
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Box 1. Mathematical model of computation by promiscuous protein dimerization networks

Promiscuous protein dimerization networks can implement diverse computations. To see how this works, consider a minimal sys-

tem, inspired by signaling pathways, where one set of protein variants, Ai, analogous to ligands, acting as inputs, can bind to a

second set of components, Bj, analogous to receptors, to form a combinatorial set of binary signaling complexes, Cij. A similar

formalism can represent other combinatorial dimerization and more complex multimerization networks. More specifically, we

consider a system with two A and two B variants, generating four binding reactions (panel A).

A1 +B1#C11

A1 +B2#C12

A2 +B1#C21

A2 +B2#C22:

At equilibrium, these reactions lead to the equations AiBj = kijCij, where kij denotes the affinity of binding of Ai with Bj. We also

assume that the total abundances of the components are at steady state, i.e., that complex formation and dissociation are fast

compared with the timescales of protein production and removal. Additionally, for analytical simplicity, we consider a regime in

which the A variants are supplied at a fixed concentration in a large extracellular volume, as could occur in the context of signaling,

so that their concentrations are negligibly perturbed by binding to B variants. However, similar functional behaviors can be ob-

tained without this assumption. We then have the following conservation laws for the total B abundances, B1T and B2T :

B1 +C11 +C21 = B1T

B2 +C12 +C22 = B2T :

From these equations, we obtain expressions for the concentrations of the free B proteins as a function of the A concentrations:

B1 =
B1T

1+k11A1+k21A2

B2 =
B2T

1+k12A1+k22A2

:

(Equation 1)

Assumingeachcomplex,Cij signalswithaspecificactivity,eij, the total output signal,S, is thesumofcontributions fromeachcomplex,

S = e11C11 + e12C12 + e21C21 + e22C22:

Finally, using the conservation laws (1), the expression for free B proteins (2), and the equilibrium equations above, we can express

the system output, S, in terms of the concentrations of the A variants and the total abundances of B1 and B2:

S =
e11B1Tk11A1

1+k11A1+k21A2

+
e12B2Tk12A1

1+k12A1+k22A2

+
e21B1Tk21A2

1+k11A1+k21A2

+
e22B2Tk22A2

1+k12A1+k22A2

: (Equation 2)

This simple model can represent at least four different classes of computation: additive, ratiometric, balance, and imbalance re-

sponses (panel B). For instance, when the activities of C12 and C21 are small compared with those of C11and C22 (when each A

component strongly activates a distinct B component), the system response can be approximated by the sum of two increasing

functions, each hyperbolically increasing with one A variant and cross-inhibited by the other.

Sz
e11B1Tk11A1

1+k11A1+k21A2

+
e22B2Tk22A2

1+k12A1+k22A2

In this limit, when the affinity coefficients have similar values, the system performs an ‘‘additive’’ computation (see panel B, left). On

the other hand, when the values of these coefficients differ from each other, and are chosen appropriately, the system can exhibit a

‘‘balance’’ or an ‘‘imbalance’’ response (panel B, center). When e21 and e22 are small, the response of the circuit depends approx-

imately on the ratio between A2 and A1.

Sz
e11B1Tk11A1

1+k11A1+k21A2

+
e12B2Tk12A1

1+k12A1+k22A2

z
e11B1Tk11+e12B2Tk12

k11+k21ðA2=A1Þ

where we have considered that k11 = k12 and k21 = k22, and have assumed kijAk [1. This behavior corresponds to a "ratiomet-

ric" computation (see panel B, right).

In summary, this minimal model shows that specific sets of parameter values enable even simple promiscuous protein networks to

operate in different computational modes. In particular, the four computational modes described above (additive, ratiometric, bal-

ance, and imbalanced) can be reached by selecting subsets of B components from a pool of only four variants, which interact with

a single pair of A components (panels C and D). This feature can be visualized by smoothly varying B levels and observing the re-

sulting changes in computation (Video S1). In that way, computations in the A space depend on the context defined by the B levels.

Thismodel highlights the central importance of differences in parameters such as affinity, activity, and expression levels, which can

be mediated by diverse mechanisms such as post-translational modification and expression-mediated feedbacks. Importantly,

(Continued on next page)
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Box 1. Continued

our model is not sensitive to the exact mechanism determining these parameters and can be expanded to explore more compli-

cated protein binding architectures that lead to an even wider array of functions.

This simple model also reveals a feature of promiscuous protein networks that sets these computational systems apart from tradi-

tional neural networks. Specifically, because of the stoichiometric nature of the biochemical reactions, reflected in the conserva-

tion laws above, a change in the total abundance of one individual component can lead to a redistribution of other complexes

(panel E). This effect can be direct, affecting complexes containing the component whose abundance was perturbed, or indirect,

impacting complexes in which the perturbed component does not appear. The resulting redistribution of components across com-

plexes is absent in neural networks, whose components are not subject to conservation laws, but functions to strengthen the

computational capabilities of promiscuous protein interaction networks.

A B

C D

E

Mathematical model and computation by promiscuous protein dimerization networks
(A) In aminimal promiscuous protein dimerization network, two A-type components (circles) interact with twoB-type components (squares) to form complexes
that induce a response. The binding affinities of the components Ai and Bj to form the complex Cij are denoted by kij , and their response activity levels are
denoted by eij :

(Continued on next page)
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Box 1. Continued

(B) Heatmaps representing the response of the minimal network as a function of the A concentrations. Parameter values are indicated by line weights, as
indicated in the legend (a.u. = arbitrary units). All levels of B-type components are set at 10 a.u. The code to generate these plots can be found at https://github.
com/dsb-lab/MinimalPromiscuousCircuit.
(C) All four distinct classes of computations shown in (B) can be generated by a single model with specific biochemical parameters using only four B-type
components. Parameter values are indicated by line weights as in (B).
(D) By changing the expression levels of the B-type components the model can transition smoothly between the four computation classes. See also Video S1.
(E) When the concentration of an A-type component is increased (blue circles), the stoichiometric nature of the biochemical reaction results in a global
redistribution of complexes. Outline bars and shaded bars show the amount of each complex before and after the increase in ligand, respectively. The increase
results in direct effects on complexes containing the varying ligand (marked ‘Direct’). Additionally, the redistribution of complexes has indirect effects on
complexes that do not contain the varying ligand (marked ‘‘Indirect’’).
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receptor, and the activities of the different possible complexes,

the authors were able to generate all possible two-input Boolean

logic functions. The most complex functional responses, such as

XOR, required competition of two ligands to bind one of the recep-

tor subunits. In this case, each ligand, presented individually, pro-

duced an activating receptor conformation. But when mixed

together, one ligand outcompeted the other for its preferred

subunit. The outcompeted ligand then bound its less preferred

subunit and produced an inhibitory complex, leading to reduced

activity when both ligands were present compared with the activ-

ity of each ligand alone. Simpler schemes, based on a single re-

ceptor or limited to homodimerization of receptors, exhibited

more limited computational repertoires. These results demon-

strated how ligands that promiscuously and competitively bind

to heterodimeric receptors can perform a variety of multi-input

computations.

Computation in the BMP signaling system
One example of computation in combinatorial protein networks

occurs in the BMP pathway. This core cell-cell signaling pathway

plays pivotal roles in a broad range of developmental, physiolog-

ical, and disease processes. In mammals, BMP ligands are

secreted by cells, diffuse through tissues to form morphogenetic

gradients, and activate cognate receptors on signal-receiving

cells. Critically, in most biological processes, cells are exposed

to combinations of multiple BMP ligand variants, suggesting

that the BMP signaling process could be inherently combinatorial.

To decipher these combinatorial input signals, cells express

multiple variants of type I and type II receptor subunits, which

assemble together with ligands to form signaling complexes,

which activate downstream Smad transcription factors.40 In hu-

mans, there are approximately 15 different ligand variants and 7

receptor variants (four type I and three type II), potentially gener-

ating thousands of distinct signaling complexes.7,41–43 Moreover,

these complexes likely vary quantitatively in their rates of Smad

phosphorylation,7 as non-signaling (i.e., inactive) complexes

have been shown to occur in the closely related TGF-b pathway.44

This combinatorial complexity allows the BMP pathway to

compute complex responses to multi-ligand combinations.41

For example, we found that in a mouse epithelial cell line, the

ligand BMP4 strongly activates the BMP pathway, but its activity

is blocked in a dose-dependent manner by another ligand,

GDF5, such that pathway activity is approximately proportional

to the ratio of BMP4 andGDF5 concentrations. This type of ratio-

metric response can occur when two ligands bind to the same

receptor subunits with similar affinity, but one (in this case,

BMP4) forms an active signaling complex while the other
436 Cell Systems 14, June 21, 2023
(GDF5) forms a non-activating partial complex, or a weakly acti-

vating full complex. Similar types of antagonism have been re-

ported for TGF-b ligands45,46 and a related form of ratiometric

sensing has been observed in yeast.47

Experiments also revealed more complex computations. For

example, BMP4 and BMP10 produce an ‘‘imbalance detector’’

response, in which either ligand can efficiently activate on its

own, but the two ligands inhibit each other’s activity, neutralizing

the response at a particular concentration ratio. (In this way the

pathway is most active when the ligand’s concentrations are

‘‘imbalanced.’’) Modeling showed that imbalance detection oc-

curs in ‘‘incoherent’’ parameter regimes, where complexes that

form with high affinity exhibit weak specific activity, while less

preferred complexes are more active. In this regime, mixtures

of the two ligands preferentially form their high affinity, but low

activity complexes. By contrast, when either of the ligands is pre-

sent alone, a mixture of strong and weak signaling complexes

form, producing greater total activity. In the opposite ‘‘coherent’’

regime, where high-affinity complexes also have high activity,

the model predicts the opposite ‘‘balance detector’’ response,

which was experimentally observed in a different cell line.41

Together, these results demonstrate that the promiscuous

BMP pathway performs complex computations on multi-ligand

inputs that can be explained in terms of an interplay between

the affinity and activity of the various signaling complexes. These

explanations for experimentally observed behaviors were

consistent with a simplified model. Taken together, these

modeling and experimental studies show how combinatorial

ligand-receptor networks can compute responses to multiple

ligands. However, further experimental validation will be neces-

sary to definitively establish the underlying mechanisms that

generate the observed responses.

MAKING COMPUTATION CONTEXTUAL

Single-cell atlas projects have revealed the transcriptional

expression profiles of diverse cell states.48–52 Analysis of these

profiles showed that the components of many combinatorial

protein networks are expressed in distinct and often recurring

configurations in different cell types.6 For example, in pathways

such as BMP, Wnt, and Notch, multiple receptor variants are co-

expressed in specific combinations. This observation provokes

the question of whether cells that express distinct, but overlap-

ping, sets of pathway components can perform different compu-

tations (Figure 2A).

Modeling of theBMPpathway showed that receptor expression

levels could strongly impact the computation performed by the

https://github.com/dsb-lab/MinimalPromiscuousCircuit
https://github.com/dsb-lab/MinimalPromiscuousCircuit


ll
Perspective
pathway (Box 1). Consistent with this prediction, perturbing

the expression of individual receptors experimentally changed

the computational response of the cell to different ligand combi-

nations.41,43 For example, knocking down the type II receptor

BMPR2 changed an additive response to BMP4 and BMP9 into

a ratiometric response. Similarly, ectopically expressing the type

I receptor ACVRL1 converted an imbalance detector response

function into an additive response. Analysis of cell lines also sug-

gested that receptor expression profile dictates computation.

Two otherwise unrelated cell lines with similar receptor profiles,

one epithelial and one fibroblastic, exhibited similar multi-ligand

integration responses. These differed qualitatively from responses

of an embryonic stem cell line with a different receptor profile.

Together, these results suggest that receptor expression profiles

can (and likely do) control the type of computation that the BMP

pathway performs on multiple ligand inputs.

This specific feature observed in signaling pathways sug-

gests a more general feature of promiscuous protein-protein

interaction networks. Indeed, earlier theoretical work on such

networks showed that, in particular regimes, the steady-state

concentrations of components depended more on protein

abundance than the parameters of the protein-protein interac-

tions themselves, suggesting that new network behaviors

could be flexibly accessed by merely changing the concentra-

tion of different components.53 Therefore, in addition to per-

forming complex computations on multiple inputs, protein-pro-

tein dimerization networks also allow cells to reprogram those

computations by varying the expression levels of pathway

components. This ability to perform a range of computations

on the same inputs allows different cell types to extract

different types of information from the same environment, or

a given cell type to change its behavior in different develop-

mental or physiological contexts. Returning to the neural

network analogy, this behavior roughly corresponds to different

cell lines operating the same network topology with different

weights to compute distinct functions.

Molecular promiscuity enables cell-cell specificity in
communication pathways
One of the most basic capabilities of any communication system

is the ability to address messages to particular recipients. For

example, in the familiar case of email, we can send messages

to individuals or groups. Cell-cell communication presents an

analogous addressing challenge: how to use signals to selec-

tively activate specific target cell types.

The simplest way to achieve such cell-specific ‘‘addressing’’

is a one-to-one ligand-receptor system in which each ligand

variant activates a distinct receptor variant exclusively ex-

pressed by a single target cell type. This architecture reflects

the strategy used in human engineered communication sys-

tems, where the goal is to avoid undesired crosstalk between

communication channels.54,55 It is also the basis for synthetic

biological signaling systems such as synNotch, where each

‘‘ligand’’ (cell surface protein) is recognized by a cognate anti-

body fused to its corresponding synNotch receptor.56 By

contrast, in many natural cell-cell communication pathways,

each ligand variant activates multiple receptor variants, each

cell type expresses multiple receptor variants, and each envi-

ronment contains multiple ligand variants. Is such a system
compatible with communication specificity in the presence of

promiscuous interactions?

In a recent computational study, we sought to answer this

question using amathematical model of a BMP-inspired promis-

cuous signaling pathway.57 This work revealed that molecular

promiscuity counterintuitively generates a powerful, fundamen-

tally combinatorial, addressing capability, in which ligand combi-

nations activate cells expressing corresponding receptor combi-

nations. In this system, just two ligand variants, present together

at different concentrations, could orthogonally activate at least

eight different cell types (Figure 2A). This occurs because cells

with different receptor profiles can respond to different localized

regions of ligand concentration space. These localized re-

sponses are in turn enabled by the computational capacity

generated through promiscuous ligand-receptor interactions.

Increasing the number of receptor variants in the system al-

lows more complex computational responses, and thereby in-

creases the number of cell types that can be uniquely addressed

by a given number of ligands. Key features that facilitate combi-

natorial addressing are (1) diverse activities for a given receptor,

depending on the ligand that activates it, and (2) the existence of

signaling complexes that form with high affinity but have low ac-

tivity, and vice versa,57 similar to the interplay observed in other

models of BMP signaling described above.41

The addressing capabilities in the many-to-many architecture

can far exceed what is possible in the seemingly simpler and

more efficient one-to-one architecture, assuming the same num-

ber of ligand and receptor variants. This advantage becomes

even stronger when one considers schemes in which a specific

ligand combination activates multiple cell types (analogous to

an email ‘‘mailing list’’). For example, a particular combination

of 2 ligands could selectively activate a subset of 3 cell types,

showing that promiscuous interactions can produce versatile

addressing schemes. Overall, these results suggest a picture

in which different cell types ‘‘tune in’’ to specific combinations

of ligands by expressing different receptor combinations.

Different environments, with distinct combinations of ligands,

can then preferentially activate one cell type, another, or both.

Nonetheless, direct experimental tests will be necessary to

confirm if evolved signaling capacities make use of this address-

ing capability.

Molecular promiscuity and cellular specificity in
adhesion
Context-dependent computation also enables another impor-

tant biological function: the ability of one cell to distinguish itself

from other cells. For example, neural circuit assembly requires

self-avoidance: individual neurons must physically contact other

neurons but avoid contacting themselves.58 To that end, neu-

rons use unique sets of surface adhesion proteins to distinguish

their own identity from that of other cells. In Drosophila, each

neuron stochastically expresses a single isoform of the cell

adhesion protein Dscam1 out of a large set (�19,000) of distinct

isoforms. These isoforms interact homophilically (in a one-to-one

manner), leading to contact-dependent repulsion for same-cell

interactions. In this way, every isoform directly represents a sin-

gle address.

By contrast, vertebrates use a combinatorial approach to

generate a much larger set of addresses for unique neurons.59
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Each cell stochastically expresses �15 different protocadherin

variants from a much smaller set of 58 (in the case of the mouse)

variants. Within the same cell (i.e., in cis), different variants

interact promiscuously,60 resulting in multimeric, heterogeneous

protocadherin clusters. Each combination of expressed proteins

represents a unique cellular identity. These protein variants

interact in a many-to-many manner in cis, with each protein

variant able to bind to all others. However, themulti-protein clus-

ters exhibit a combinatorially homophilic interaction between

juxtaposed cell membranes (in trans), such that a perfect match

of all components is required for trans interactions, whether on

the same or different cells (Figure 2B). By experimentally co-ex-

pressing sets of up to 5 different protocadherin variants, Thu

et al. showed that only cells with identical expression patterns

exhibit strong trans binding. Mismatch of a single isoform

located on two juxtaposed membranes was sufficient to greatly

diminish homophilic adhesion strength.60,61 In this way, combi-

nations of a few promiscuously interacting protocadherin iso-

forms in vertebrates provide neurons with a vast number of

orthogonally interacting addresses and enable them to discrim-

inate self from non-self. Recent work has shown that this mech-

anismmight play more general roles in the mechanical organiza-

tion of tissues during morphogenesis.62

Transcription factor dimerization networks allow
complex gene regulation
In a multicellular organism, combinatorial transcription factor

dimerization networks could play a key role in enabling cell-

type-specific gene regulatory responses to signals. For example,

members of the bHLH transcription factor family share similar

helix-loop-helix domains that allow the formation of many

different dimers, as many as 30 in some systems.63 These di-

mers can exhibit different transcriptional activities and DNA-

binding site preferences. Further, some bHLH factors lack

DNA-binding domains altogether, and therefore generate tran-

scriptionally inactive dimers. Consistent with the mathematical

models and other examples above, this combinatorial complex

formation could allow cell context-dependent computational

gene regulation responses. For example, key developmental

pathways activate the expression of bHLH transcription factors,

which can then form various homo- and heterodimers with them-

selves and one another. In this way, they provide a layer of

combinatorial dimerization between signaling pathways and

their genomic targets. For example, the Hes and Her genes are

bHLH transcription factors that are activated by Notch, FGF,

and other signaling pathways.64 Once expressed, these tran-

scription factors can then form dimers regulating the expression

of downstream targets, as well as their own expression.

In many developmental processes, Hes and Her proteins

negatively regulate their own expression, producing complex

regulation of downstream gene targets. In somitogenesis, this

autoregulation leads to synchronized oscillations in expression,

which are necessary for the repetitive process of somitogene-

sis.65 In neurogenesis, additional factors controlling the strength

of this feedback can produce different outcomes in embryonic

and adult stem cells.66 However, though the negative feedback

of Hes and Her genes plays a clear role in both somitogenesis

and neurogenesis, it was insufficient to explain all the observed

patterns of gene expression in these two processes.33,67 This
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suggests that combinatorial interactions between bHLHs could

play a key role in determining gene activation and dynamics.

Below, we describe two examples where explicitly accounting

for bHLH dimerization was necessary to explain the combinato-

rial and context-dependent effects of Hes and Her on their

target genes.

In somitogenesis, knocking outHer1 orHer7 produces distinct

effects, even though they promiscuously bind similar targets and

have similar effects when overexpressed.33 A careful study of

Her1 and Her7 in zebrafish development revealed that they

formmany dimers, binding to themselves, each other, and a third

binding partner, Hes6. This confirmed an earlier prediction of the

existence of Her1-Her7 heterodimers to explain observed ef-

fects in zebrafish.68 Most of the formed dimers are transcription-

ally inactive. Only the Her7:Hes6 heterodimer and the Her1:Her1

homodimer have strong DNA-binding activity and can regulate

downstream expression of Her1 and Her7. Thus, while Her1

and Her7 bind similar DNA regions, their sequestration in a

‘‘dimer cloud’’ and competition for shared binding partners

give them distinct roles in controlling gene expression, as

Her7, but not Her1, is required for certain oscillations.

Dimerization of bHLHs can also be used to explain their

context-dependent effects on their gene targets. Neural stem

cells (NSCs) readily proliferate during embryonic development

but are largely quiescent during adult neurogenesis. The Hes

bHLH genes have two regulatory roles in this transition to quies-

cence: inhibiting their own expression and inhibiting the expres-

sion of proneural factors. Combinatorial bHLH dimerization is

key to explaining how this circuit can produce different degrees

of quiescence between the adult and embryonic states.67 Spe-

cifically, Inhibitor of DNA-binding factors (IDs) have a helix-

loop-helix domain that allows them to dimerize with bHLHs,

but lack the basic domain that promotes DNA binding. Thus,

IDs can dimerize with Hes proteins and alter their DNA-binding

properties. As a result, Hes-ID dimers can perform only one of

Hes’s two regulatory roles, as they can inhibit expression of pro-

neural factors but do not inhibit expression of Hes itself. This

suggests that the expression of ID factors in adult NSCs stabi-

lizes Hes expression, removing oscillations produced by its

negative autoregulation, while more strongly repressing proneu-

ral factors, increasing the degree of quiescence.

Together, these examples highlight the complex gene regula-

tion requirements for mammalian development and how bHLH

dimerization supports those higher-level functions. However,

key questions remain unclear: what computations are possible

with bHLH and other combinatorial transcription factor dimeriza-

tion architectures, and how do those computations enable devel-

opmental and physiological cell behaviors? What particular func-

tions do these computations support, outside of achieving diverse

patterns of gene expression? For example, dimerization networks

can decouple the control of different aspects of circuit output,

such as the period or amplitude of oscillations in somitogenesis.33

Moreover, control of bHLH gene expression is also crucial to buff-

ering these oscillations from the effects of bursty transcrip-

tion.69,70 How do these promiscuous dimerization networks inte-

grate with other complex circuit features, such as autoregulation

to produce oscillations of shared components? Experimental

work is needed to systematically map bHLH dimerization net-

works, identify the functions they compute, and determine how
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those functions change depending on which factors are ex-

pressed in any given cell context. Moreover, the role of competi-

tive dimerization in tuning DNA-binding and transcription factor

activity can be applied to other transcription factor families,

such as nuclear hormone receptors, which also exhibit complex

dimerization patterns.71,72 Such studies would allow us to under-

stand transcription factor dimerization networks as predictable

computational devices, and better control their behavior.

SYNTHETIC COMBINATORIAL PROTEIN NETWORKS
ENABLE SCALABLE MULTISTABILITY

Previously, most synthetic biological circuits have operated at

the level of individual cells. However, recent advances have

begun to enable the design of multicellular circuits that allow

cells to operate in multiple states, communicate specifically

with one another, and spatially organize into tissue-like struc-

tures. These multicellular behaviors will require increased

computational capabilities, paralleling those that arose during

the corresponding evolutionary transition to multicellularity.

The same principles of computation by combinatorial protein

networks could enable such synthetic circuits.

For example, we recently sought to create a synthetic cell fate

control system that would generate multiple stable states.73 To

choose a design, we were inspired by two prevalent features of

natural cell fate control systems: First, natural systems use pro-

miscuous dimerization among transcription factors, such as

bHLH factors, to generate a variety of dimers with different

DNA-binding specificities and activities, including inactive

complexes18,74,75(Figure 2C). Second, they often include positive

autoregulatory feedback loops in which dimers directly or indi-

rectly activate expression of their own components. Aminimal cir-

cuit design, termedMultiFate, embodies those two principles. It is

based on a set of engineered zinc-finger transcription factors that

can promiscuously homo- and heterodimerize to form all possible

dimers (Figure 2D, left). Homodimers positively regulate their

own expression while heterodimers are inactive. Mathematical

modeling showed that this circuit design could produce multiple

stable attractors in the space of transcription factor concentra-

tions (Figure 2D, right). Further, the number of states initially scales

exponentially as 2N � 1, where N is the number of factors. This

scaling is enabled in part by the use of dimerization for cross-inhi-

bition among transcription factors. Eventually, this scaling be-

comes limited by the more rapid growth of inactive heterodimers

compared with active homodimers. Consistent with the model,

adding additional transcription factors to an existing experimental

circuit expanded the number of states without re-engineering the

existing system, with 2- and 3-factor circuits respectively gener-

ating 3 and 7 stable states. The synthetic system also recapitu-

lated other aspects of natural cell fate control systems, such as

progressive and irreversible differentiation. This work shows

how combinatorial dimerization can play a key computational

role in enabling multicellularity.

STUDYING PROMISCUOUS PROTEIN-PROTEIN
INTERACTION SYSTEMS

Many biological systems possess the elements necessary for

computation through combinatorial binding (Figure 3A; cf. Box
1). However, predicting and controlling the capabilities of these

systems poses particular challenges and opportunities. First,

these systems can contain many paralogs, whose subtle func-

tional differences are not apparent in their highly similar struc-

tures and sequences. Second, the large number of combinatorial

interactions, even for modest numbers of components, requires

commensurately large datasets for qualitative mapping and

quantitative measurement. Third, design of newmodified protein

variants could potentially expand network computations but re-

quires models that relate component sequences to their interac-

tion parameters. Initial work has begun to address these three

issues.

Classifying inputs by their effective interactions
The maintenance of multiple protein variants within networks

suggests that they could perform unique functions, but differ-

ences between these components can be subtle and difficult

to determine. Often, they have similar sequences and structures

that do not provide obvious clues to the subtle differences in

binding or activity that allow them to produce distinct effects.

In other fields, comprehensive measurements of pairwise inter-

actions have allowed functional systems-level classification of

molecular components. For example, measuring the effects of

a set of antibiotics, alone and in all pairwise combinations, on

the growth of E. coli identified antagonistic and synergistic inter-

actions.78 These interactions were then used to classify antibi-

otics into equivalence groups, where drugs exhibiting the same

pattern of interactions with other drugs are grouped together.

Remarkably, this epistatic classification scheme—lacking any

direct molecular information—matched that based on the drugs’

known biochemical mechanisms of action.

Inspired by such studies, we asked whether a similar func-

tional classification of BMP ligands could be obtained by sys-

tematically and quantitatively analyzing BMP pathway re-

sponses in several cell lines to 10 BMP ligands, both

individually and in all pairwise combinations.43 In mouse embry-

onic stem cells (mESCs), many of the 10 ligands studied com-

bined additively with one another, as if they were functionally

interchangeable. However, even ligands that combined addi-

tively with one another sometimes interacted differently with

other ligands. For example, BMP7 and BMP9 combined addi-

tively with each other, but either additively or synergistically,

respectively, with BMP4, putting them into distinct equivalence

groups. Altogether, this approach classified the full set of 10 li-

gands into 5 equivalence groups, with ligands within a group

sharing both a similar individual potency and a similar pattern

of effective interactions with other ligands (Figure 3B).

Are these equivalence groups intrinsic properties of the li-

gands, or are they contextual, depending on properties of the

cell line and its receptor expression profile? In a second cell

line, NMuMG, which exhibits a different BMP receptor expres-

sion profile, the ligands produced different pairwise responses.

For example, BMP9 and BMP4 synergized in mESCs, but com-

bined additively in NMuMG cells. More generally, NMuMG cells

exhibited more antagonistic interactions between ligands. While

the ligands could again be classified into five equivalence

groups, these groups differed from those obtained in mES cells.

More generally, expanding this analysis to a panel of five addi-

tional cell lines differing in their receptor expression profiles
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Figure 3. Strategies to understand and control
combinatorial complexity of protein dimerization
networks
(A) In combinatorial protein dimerization networks, one set of
protein variants (Ai ) binds combinatorially to another set of
protein variants (Bj ); the resulting complexes produce a
common output (S). Global parameters describe the protein-
protein binding (kij ) and complex activity (eij ) parameters. The
output of the network depends on the complex levels, and
thus on the abundance of various components (Ai ;Bj ), which
can vary between cell contexts.
(B) The functional differences between protein variants are
often unclear because of the variants’ high sequence simi-
larity. For example, the highly homologous BMP ligands
activate a common output (pSmad) but can produce distinct
effects in combinations. Mapping pairwise responses allows
individual ligands to be classified by their effective in-
teractions, highlighting functional differences between the li-
gands.43 These differences are not global, but can vary be-
tween cell contexts.
(C) While all dimerizations are possible in principle, they do
not necessarily produce output. For example, in the Wnt
pathway, not all Wnt ligands bind and activate the associated
receptors (Fzd). Exposing cell lines engineered to express
only a single Fzd receptor to each Wnt ligand revealed pat-
terns of receptor-ligand preferences that were not clear from
protein sequence alone.76

(D) Quantitatively predicting the output produced by protein-
protein interactions requires careful parameterization of
binding affinity and overall activity (i.e., kij and eij ). Combining
measurements of component abundance (Ai and Bj ) with
output dynamics (S) allows the inference of these parameters.
For example, quantifying expression of Smad proteins and
the expression of their downstream target genes fit a model
that predicted target gene expression from Smad expression,
and vice versa.77

(E) Redesigning a given component’s sequence can alter its
protein-protein interactions and, in some cases, produce
entirely new responses and computations. The coupling in-
teractions of 148 GPCRs with 11 Ga subunits were used to
train a machine learning predictor of coupling strength. This
model then guided the design of a less promiscuous GPCR,
by generating GPCR sequences predicted to couple
uniquely to a given Ga subunit.15
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revealed the strong effect of receptor expression on ligand

equivalence, with each of the 7 cell lines, some differing only in

their receptor expression profiles, producing a distinct equiva-

lence group classification. Evidently, cell context strongly im-

pacts ligand equivalence.

This large dataset also provided insight into the effects of spe-

cific receptors on multi-ligand computation. For example,

consistent with known ligand-receptor interactions, the

BMPR1B receptor mediates signaling by the ligands GDF5,

GDF6, and GDF7 by converting their antagonistic interactions

to additive ones. Similarly, the ACVR1 and ACVRL1 receptors

relieve non-additive interactions of BMP10 and BMP9, respec-

tively. This phenotypic classification also proved useful in ex-

plaining previous results in the literature. For example, BMP9

was shown to functionally replace BMP10 during vasculature

formation but not heart development.79 This difference in the

equivalence of BMP9 and BMP10 is consistent with observa-

tions that only when the receptor ACVRL1 is expressed, as it is

in endothelial cells, do the two ligands fall into the same equiva-

lence group. Taken together, these results underscore that BMP

signaling is both combinatorial and contextual, as well as the po-

wer of effective interactions for revealing the spectrum of

computational power in a given pathway and for individual

ligands.

Mapping and quantifying protein-protein interactions
A key step in building a predictive model of combinatorial com-

putations requires identifying which protein-protein complexes

can form. However, even small changes in amino acid sequence

can drastically affect protein binding affinity.80 As a result, one

cannot necessarily predict how strongly one pair of protein var-

iants based on the binding strengths of their paralogs.

For example, Wnt signaling provides powerful instructive cues

during development. The pathway includes 10 ligand variants,

each of which could potentially bind and activate any of 9 Fzd re-

ceptor variants. In fact, however, the signaling activities of the li-

gands differ from one another and vary across different cell con-

texts.11,12 To build amechanistic understanding of the functional

differences between Wnt ligands and Fzd receptors, Volosha-

nenko et al. engineered cells to express each Fzd receptor

variant individually and then measured the activation of each re-

ceptor by each Wnt ligand.76 This map showed that each ligand

activated multiple receptors and that most receptors were acti-

vated by multiple ligands (Figure 3C). (Note that two receptors

were not activated by any ligand andmay provide other, possibly

inhibitory, functions.) Moreover, many structurally homologous

ligands, such asWnt9a andWnt9b, activated different sets of re-

ceptors. Thus, this approach revealed counter-intuitive interac-

tions and revealed the diverse capabilities of these apparently

similar ligand and receptor variants.

An accurate prediction of combinatorial computations re-

quires knowing not only which complexes can form, but their

relative affinities of formation and their output-producing activ-

ities (kij and eij in Box 1; Figure 3A). Lucarelli et al. built such a

model to predict the gene-specific dynamics of multiple targets

of the TGF-b pathway. In TGF-b signaling, three variants of the

Smad effector, Smad2/3/4, promiscuously assemble in different

combinations to generate a family of 10 possible trimeric tran-

scription factor complexes that differ in their genomic targets
and activities. Predicting how the distribution of these trimers de-

pends on the expression levels of the three components is

essential for understanding computation within the pathway.

Lucarelli et al. used mass spectrometry and co-immunoprecipi-

tation to quantify the phosphorylation dynamics of Smad mono-

mers.77 The authors then used these data to fit a model in which

monomers undergo pairwise association and dissociation

(Figure 3D). Because each Smad2 and Smad3 monomer can

be phosphorylated on two sites, many molecularly distinct com-

plexes are possible. In fitting the model, they therefore used a

standard regularization technique81,82 to limit the number of

nonzero parameters and focus on key Smad complexes. The re-

sulting model predicted that three crucial Smad complexes, out

of the possible 10, drove most target gene expression. Critically,

the fit model could predict TGF-b activation of gene expression

in other cell lines based solely on Smad expression levels. It

could also make reverse predictions, correctly inferring that a tu-

mor sample had elevated levels of Smad activation overall based

on changes in its gene expression. These results provide hope

that limited numbers of measurements can be sufficient to

enable predictive, mechanistic modeling of combinatorial pro-

tein networks.

Redesigning component sequence to produce new
behaviors
Machine learning methods show promise for identifying subtle

patterns in the behavior of combinatorial protein networks

and guiding the design of new signaling components. A clear

example of this is recent work with GPCRs.15 These receptors

promiscuously activate a variety of G proteins, via interactions

with the C-terminal tail of the Ga subunit. The authors quanti-

fied pathway activation by all possible pairs of 148 human

GPCR and 11 Ga C-terminal domain variants, each fused to

a common backbone. The sigmoidal signaling response to

varying ligand concentrations allowed the authors to quantify

the coupling between each receptor and each Ga variant.

Training a machine learning model with these data identified

sequence-specific coupling features, which the authors then

used to forward design GPCR variants that coupled with a

particular Ga variant of interest (Figure 3E). These results

demonstrated how quantitative input-output measurements

contain sufficient information to guide the design of new

signaling components. Further, even though the underlying sys-

tem is promiscuous, these results show that comprehensive

analysis of promiscuous interactions, together with machine

learning approaches, can enable the design of components

with greater specificity.

CONCLUSIONS AND FUTURE DIRECTIONS

In his 1995 review, ‘‘Protein molecules as computational ele-

ments in living cells,’’ Dennis Bray wrote, ‘‘Because proteins.
integrate inputs and produce outputs it seems inescapable

that the highly interconnected network of protein-based path-

ways in living cells will share some of the properties of neural

nets.’’28 Here, we have seen how combinatorial protein networks

can provide a versatile architecture for realizing neural-like

computation at the protein level. Mounting experimental evi-

dence shows that these systems can compute combinatorial
Cell Systems 14, June 21, 2023 441
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functions of multiple input proteins. Furthermore, the computa-

tion can be reprogrammed by modulating the expression levels

of circuit components. This ability allows cells to tailor computa-

tions to cell state and context and support higher-level functions

such as addressing and self-avoidance. Critically, the elements

necessary for combinatorial computation are present in a huge

range of systems, the vast majority of which have not yet been

systematically analyzed from this point of view.

In computer science, different neural network architectures

have been developed to perform different kinds of computational

tasks.83 In a similar way, different combinatorial protein network

architectures may be optimized to perform different classes of

computation. For example, bHLH dimers often autoregulate their

own expression, introducing direct feedback loops that allow the

generation of stable attractors, while developmental signaling

systems such as BMP can use computation to selectively

respond to different ligand combinations. Similarly, biological

pathways may also operate over multiple timescales. For

example, BMP can transmit signals on timescales of minutes

to hours. Over the longer timescales of differentiation, cells can

alter receptor expression, dynamically changing the ligand com-

binations they sense. Analysis of single-cell trajectories in devel-

opmental time courses could shed more light on such dynamic

behaviors and on their potential to alter computational behavior.

Combinatorial protein networks differ in fundamental ways

from their artificial neural network analogs. Because proteins

have finite concentrations in cells, competition for binding can

lead to indirect (or nonlocal) interactions across a set of promis-

cuously dimerizing proteins. That is, an increase in the level of

one complex necessarily reduces the concentrations of alterna-

tive complexes. It would be interesting to understand how this

architectural difference impacts the functional expressivity of

the network, and whether the principles of combinatorial protein

networks could be usefully imported into artificial neural net-

works for engineering applications.

Above, we focused on a single set, or ‘‘layer,’’ of promiscu-

ously interacting proteins. Superficially, this contrasts with

deep multi-layer neural network architectures. However, biolog-

ical circuits can also contain multiple distinct layers of combina-

torial dimerization, with one layer regulating the next. For

example, the promiscuous ligand-receptor interactions in the

BMP signaling system (layer 1) lead to promiscuous phosphory-

lation of a set of distinct Smad proteins by distinct signaling com-

plexes (layer 2). These in turn promiscuously multimerize to form

a variety of transcription factor complexes (layer 3). Finally, these

complexes exhibit many-to-many binding relations with different

target sites on the chromosome (layer 4). In this way, biological

circuits achieve multiple layers of computation. It will be inter-

esting to determine which aspects of the overall computation

are performed at each level, and why. It may also be important

to consider how computations are deployed across multicellular

systems. Contextuality potentially allows each cell type to tailor

the computation of a given pathway to its own needs. Experi-

ments and models will both be central to exploring how compu-

tational modules within individual cells compose to generate

more complex, and spatially extended, tissue level functions at

a larger scale.84

The paradigm of combinatorial protein networks can support

at least two types of potential applications. First, the ability to
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develop predictive quantitative models of these systems could

open up the ability to control cell behaviors with greater preci-

sion. Cell atlas projects have revealed the receptor expression

profiles of most cell types. Promiscuous pathways are often

involved in disease and targets for drug development. For

example, mutations in the ACVR1 BMP receptor cause the dis-

ease fibrodysplasia ossificans progressiva (FOP). The discovery

that these mutations cause disease by changing a non-signaling

ligand-receptor complex into an signaling complex introduced

important new approaches in the development of FOP therapeu-

tics.44,85 Understanding how potential perturbations of this and

other pathways in each cell type and tissue environment change

ligand perception could enablemore rational design of therapeu-

tic interventions. A second class of applications of this paradigm

will undoubtedly unfold in synthetic biology, where systems of

ever greater computational capacity are needed to enable

more specific and controllable cell therapies.86–91 The case of

the MultiFate architecture discussed above shows a relatively

simple example in which combinatorial protein networks can

enable a complex dynamical behavior—multistability. However,

to program more complex multicellular systems, eventually

rivaling those of the natural immune system, for instance, many

more types of rapid protein-level computation will be needed.

The principal challenge in both analyzing and synthetically im-

plementing combinatorial protein networks is the explosion of in-

teractions and component expression contexts. Analytically,

one approach is based on minimal, effective biophysical models

that represent the essential components and interactions (Box 1)

and are parameterized with empirical measurements. This

approach requires systematic characterization of components

and relies on approximations or simplifications that may not be

universally valid across all cell contexts. Alternatively, machine

learning approaches based on high-throughput measurements

could potentially provide a mechanism-independent way to pre-

dict behaviors. These, too, suffer from the need for large data-

sets and may be limited in their predictive ability by the contents

of the training dataset. While such statistical models may not be

immediately interpretable, they could nevertheless be valuable

for design of experiments and therapeutics. For both modeling

approaches, a key challenge is grappling with the strong contex-

tuality of dimerization networks. Different cell types express

different levels of circuit components, potentially generating a

whole repertoire of different functional behaviors. It will therefore

be critical to ensure that models can accurately predict circuit

behavior across cell contexts.

Synthetically, designing combinatorial protein networks faces

the challenges of imposing defined many-to-many interactions

on a set of engineered protein components, and then regulating

those components in different cell types. Engineering of

combinatorial protein networks will benefit from growing libraries

of well-characterized protein interaction domains,92–94 and

emerging methods to engineer complex protein-level cir-

cuits.31,95–98 However, methods to assemble larger circuits in a

more systematic way will be pivotal in expanding synthetic

mammalian biology to multicellularity.

How ‘‘special’’ is the exact architecture and parameter values

that characterize any given combinatorial protein network? At

one extreme, it could be that in order to perform the required

range of signal processing tasks within the organism, a
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combinatorial protein network needs to fine-tune its structure, af-

finities, activities, and other biochemical parameters. If one could

replay the tape of evolution, in Stephen Jay Gould’s hypothetical

metaphor, a closely equivalent network would have evolved with

nearly identical parameters. On the other hand, it is possible

thatmanydifferent network topologies could provide the full diver-

sity of computational functions for many or most possible param-

eter values. In this case, evolution might have stumbled upon a

very different network design or parameter regime that neverthe-

less performs equivalent computations. In this case, the particular

details of the pathways we observe would represent a contingent

evolutionary artifact. Either way, it would be interesting to know

whether the computational capacity of the system was more

conserved or constrained than the molecular implementation.

Unlocking the full potential of promiscuous protein computation

would provide a new lens to understand, predict, control, and ul-

timately program biological systems. Achieving this goal will

require a combination of mathematical modeling, quantitative

experimental analysis, and synthetic biology approaches. It will

also require deeper analysis of the systems discussed above

and extension of the paradigm toother systems that remainpoorly

characterized from this point of view. In the longer term, it will be

interesting to see to what extent a unified paradigm can explain a

broad diversity of promiscuousmolecular circuits, built out of pro-

teins and potentially other biological molecules as well.
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33. Schröter, C., Ares, S., Morelli, L.G., Isakova, A., Hens, K., Soroldoni, D.,
Gajewski, M., J€ulicher, F., Maerkl, S.J., Deplancke, B., and Oates, A.C.
(2012). Topology and dynamics of the zebrafish segmentation clock
core circuit. PLoS Biol. 10, e1001364. https://doi.org/10.1371/journal.
pbio.1001364.

34. Ammeux, N., Housden, B.E., Georgiadis, A., Hu, Y., and Perrimon, N.
(2016). Mapping signaling pathway cross-talk in Drosophila cells. Proc.
Natl. Acad. Sci. USA 113, 9940–9945. https://doi.org/10.1073/pnas.
1610432113.

35. Galstyan, V., Funk, L., Einav, T., and Phillips, R. (2019). Combinatorial con-
trol through allostery. J. Phys. Chem. B 123, 2792–2800. https://doi.org/
10.1021/acs.jpcb.8b12517.

36. Yan, S.F., D’Agati, V., Schmidt, A.M., and Ramasamy, R. (2007). Receptor
for Advanced Glycation Endproducts (RAGE): a formidable force in the
pathogenesis of the cardiovascular complications of diabetes & aging.
Curr. Mol. Med. 7, 699–710.

37. Agliari, E., Altavilla, M., Barra, A., Dello Schiavo, L., and Katz, E. (2015).
Notes on stochastic (bio)-logic gates: computing with allosteric coopera-
tivity. Sci. Rep. 5, 9415. https://doi.org/10.1038/srep09415.

38. de Ronde, W., Rein ten Wolde, P., and Mugler, A. (2012). Protein logic: a
statistical mechanical study of signal integration at the single-molecule
level. Biophys. J. 103, 1097–1107. https://doi.org/10.1016/j.bpj.2012.
07.040.

39. Marzen, S., Garcia, H.G., and Phillips, R. (2013). Statistical mechanics of
Monod–Wyman–Changeux (MWC) models. J. Mol. Biol. 425, 1433–
1460. https://doi.org/10.1016/j.jmb.2013.03.013.
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